
A brief introduction to xAAL v0.4-draft Rev 3

Christophe Lohr Jérôme Kerdreux Philippe Tanguy

August 10, 2015

Abstract
This paper gives a brief description of xAAL such defined by the IHSEV/HAAL team

of Telecom Bretagne and its status in 2015.
Be aware that this is an ongoing work.

1 Motivation
Many vendors offer home-automation solutions. Small devices are plugged everywhere at home.
They talk to each other using dedicated link layers and protocols (powerline channels, radio
channels, etc.). There are almost as many home automation protocols as manufacturers (or
alliances of manufacturers). The consequence is a strong issue about interoperability: how to
make a device from vendor A (e.g., a switch) talking with a device from vendor B (e.g., a
lamp)?

Solutions exist to address the interoperability issues (the state-of-the-art is not presented
in this document). All solutions play around the idea of a so-called gateway: a box (a small
computer) is equipped with two or more modules, each module talking a given home-automation
protocol; then a piece of software over those modules make it possible to forward messages
between protocol A and protocol B. Moreover, those boxes embed additional functions to make
all of this usable: HMI (via Web and/or smartphones), configuration facilities, connectors to
extra services in the cloud, etc. Such solutions are however partial from the interoperability
point of view since those boxes are hardly able to talk to each other.

Based on these facts, we decided to reorganize and formalize architectures of those boxes,
which are in fact all composed of the same functionalities. So, we propose to split functionalities
into well defined functional entities, communicating to each other via a messages bus over IP.
Each entity may have multiple instances, may be shared between several boxes, and may be
physically located on any box. As a result, the xAAL system will be interoperable by design
(hopefully).

2 General Architecture
The xAAL system is based on an IP multicast bus (IPv4 or IPv6) called the xAAL bus.
Devices send messages to the bus to announce themselves (alive notification) or changes of
theirs attributes, listen to requests (possibly in a broadcast way) and send replies according to
their API specified in schemas.

A bus allows the discovery: when a new component appears in the installation, it announces
itself. All other entities can then take it into account. Similarly, when a new component enters,
it can query the bus to discover the other components already present. This greatly facilitates
the configuration, allows dynamicity as well as the evolution capacities of the system.

There are several advantages to the use of a IP multicast bus:

1

• Point-to-point communications are avoided which saves devices memory resources;

• Changes on the available home-automation devices are easily taken into account by al-
lowing the devices to announce themselves when entering the xAAL bus.

Messages sent/received to/from the xAAL bus are intended to manage or act on home-
automation devices. Therefore, a set of functions should exist and interact with the bus in order
to allow this. The required functions are described below and extensions are also proposed,
i.e., functions that are not necessary for xAAL to be fully operational but that are interesting
for end users. Each of the functions may be replicated, provided by one or several hardware
devices, and should be able to send messages over the xAAL bus.

2.1 Functional Architecture
Figure 1 shows the general functional architecture of the xAAL system.

Native Equipments. Some home automation devices (sensors, actuators) can communicate
natively using the xAAL protocol.

Gateways. In general, the home automation devices only support their own proprietary
communication protocol. Therefore, gateways will have the responsibility to translate messages
between the manufacturer protocols and the xAAL protocol.

At this level it is assumed that, within an installation, there are as many gateways as
manufacturer protocols used in the building.

According to the technologies and the manufacturer protocols, each gateway will handle the
following issues: pairing between the gateway and devices, addresses of devices, configuration,
and the persistence of the configuration.

Note that it may be interesting to be able to query a gateway about the mapping between
xAAL addresses and manufacturers addresses of devices. The mapping information given by
the gateway may be useful for the configuration of the database of metadata (described below).
Indeed, during the configuration, the installer usually notes the manufacturer physical address
of devices with their location in the house. To facilitate the configuration of this database
(location information associated with the xAAL address of devices), it may be interesting, at
the beginning, to look at the manufacturer identifier or address of the devices.

Schemas Repository. The home automation devices are all described by a schema (the
nature of the equipment, how to interact with it). These schemas are listed in one or more
schemas repositories.

Because schemas repositories are xAAL devices, they are present on the xAAL bus. Other
entities query them via this bus to get schemas describing other devices (whenever those devices
are active or not on the bus).

One queries registry on a schema name. If known, it returns the content of the schema.
In a given installation, there may be zero or more schemas repository talking on the xAAL

bus.
The schema definition of a device must be especially careful. A number of general purpose

schemas have been specified by our “xAAL International Bureau of Standardization” ,. More
specific schemas may be further defined by the manufacturers themselves.

Therefore there possibly can be conflicts: given a schema name, several registries on the
bus could return schemes having divergent descriptions.

Then, it is necessary to plan a mechanism for conflict resolution: either in a static way
(where an administrator invalidate or delete conflicting schemas in a register), or dynamically

2

xAAL native

Home Automation

Devices
Gateway

X2D−xAAL

Gateway

ZWave−xAAL

Gateway

...−xAAL

xAAL bus (Multicast IPv4/IPv6 UDP)

.

Home Automation Devices

Schemas

Repository

xAAL bus (Multicast IPv4/IPv6 UDP)

Schemas

Repository

Database of

Meta−data

for devices

.

Cache of

xAAL events

xAAL bus (Multicast IPv4/IPv6 UDP)

scenarios

of

Automata
User

Interface

web

User

Interface

externaltablets...

REST...

servers

web

...

.

PC TV...

Figure 1: Functional Architecture of xAAL.

3

(where schema repositories spread priority information in addition to schemas; letting receivers
to short schemas). This point has not yet been decided in the current specification.

However, because those schemas are locally available, this allows easing maintaining the
consistency of a home-automation facility (at least locally).

The updating of schemas is, a-priori, a maintenance operation. However, the dynamicity
is also possible. For instance, when a schema repository discover a new device with a not-yet-
known schema, it can ask him its description, look at an url in this description, and try to
download the schema content from this url.

Database of Metadatas. Each automation device within a facility is likely to be associated
to a piece of information: at least location information (e.g., declare that the equipment typed
as a lamp and having address X is located in the kitchen), and possibly a symbolic name (e.g.,
device having address X is called "lamp#1").

All this information is grouped in a database of metadata. For openness and extensibility
(as flexibility and not in the sense scalability), this information is stored as a set of tags.

This database contains somehow the configuration of home automation installed.
The database of metadata is present on the xAAL bus. Other xAAL devices can query it

via this bus to obtain tags associated to the identifier of a device, or conversely a list of devices
associated with one or more tags.

For each device, the database is fed with information: its xAAL address and a set of tags.
(Note that the type of the device may be a tag.)
Information can be added, updated or deleted.
One can question it on tags associated to a device.
One can question it on devices associated on some tags.
One can question it on existing tags.
One can question it on known devices.
Note that a device may be known by the database without being actually present on the bus.
(The presence is managed in a different way.)

There should be at least one database of metadata on the bus. There could be several.
The creation of this database must be established with the greatest care. It will thus be

advisable to implement the classic mechanisms of organization of tags (or quality of data):
check inconsistencies, synonyms, ambiguities, provide facilities renaming tags, etc.

Note that structuring the information with tags is different from a structure by key-value.
For instance with tags one just records "living-room" instead of "location: living-room". This
implies that the semantic is given by the value of the tag itself and not by a set of predefined
keys. There are benefits in doing this so. For instance, the classic trap is to specify location
information in two places, for example indicate a friendly name tag "living-room lamp", then add
a location tag "living-room" (by chance in this case, information is redundant but convergent...)
This notion of friendly name can be found in UPnP... In fact this mechanism is a source of
problems: either it is diverted from its initial role to put location information as in the previous
example, or it is left to the manufacturer value (how many DLNA TV or smartphones have for
friendly name Media Server?...)

Cache. Unidirectional sensors are quite common: one can not question them, they just send
their information in a sporadic way. (E.g., A thermometer which sends the temperature only
if it changes.)

So, there should be at least one cache on the xAAL bus that stores this information so
that other entities can query it whenever necessary.

4

Such a cache should store at least the notifications sent by the devices. One can further
wonder about the relevance of recording messages of type request/reply.

As in any caching mechanism, it is necessary to associate a timestamp to cached information.
When another entity on the xAAL bus asks the cache for information, it also gets the age of
the cached information, and decides by itself if it is good enough or not. This is not the
responsibility of the cache to manage the relevance of data according to their age, this is the
responsibility of the client that makes the request.

Again, inconsistencies may arise if two caches return information that has the same times-
tamp but divergent values. We assume that this phenomenon is a priori very rare. Consequently,
we do not intend to define a particular mechanism to manage inconsistencies. Only the client
entity is in charge of sorting received information according to its own criteria.

Automata of Scenarios. Scenarios are advanced home automation services like for example:
start a whole sequence of actions from a click of the user, or at scheduled times, or monitor
sequences of events and then react, etc.

To do this, xAAL proposes to support it by one or more entities of the type automata of
scenarios.

These automata of scenarios are also the right place to implement virtual devices: for
example a scenario could aggregate and correlate a variety of events from real devices, and
then synthesizes information such as "presence" and notify it on the bus, in order to be used
by other entities. By proceeding in this way, this scenario should appear by itself as a device
on the bus, with its address and its schema. This scenario is a kind of virtual device.

As usual, there may be inconsistencies, conflicts or deadlock between scenarios (one turns
on the light, the other off). This is not the xAAL specification itself which is going to prevent
it. Conflicts are supposed to be treated as far as possible off-line when editing scenarios. The
specification does not require the use of a model-checker based on colored timed Petri network
or anything like this... It remains a research subject, certainly very interesting, but outside
the framework of specifying xAAL. (If anyone wants it, it can introduce a monitoring device,
which is itself a kind of engine of little particular scenarios.)

User Interfaces. One or many user interfaces are provided by specific entities connected
to the xAAL bus. This can be a real hardware device with a screen and buttons; or a soft-
ware component that generates Web pages (for instance) to be used by a browser on a PC,
a connected TV, or whatever; or software that provides a REST API for mobile applications
(tablets, smartphones), to an external server on the cloud for advanced services, to an MQTT
server, or to offer features for service composition, etc.

Even there, it seems natural to be able to arrange several user interfaces (smartphone,
tablet, remote control, etc.) within a home automation system.

Synthesis. Such a functional architecture allows managing the dynamic aspects of the in-
frastructure (modularity, scalability, adaptation, etc.). Thus, advanced functions such as HMI
or automata of scenarios can adapt themselves automatically to the infrastructure and to its
modifications (if equipment enters / leave, if one fails or is replaced, etc.).

The typical work flow of an HMI could be:

1. query the bus to be aware of the present devices;

2. query devices about theire description (model, manufacturer, URL, etc.);

3. query the schema repository for the type of these devices, the type of data from the
sensors / actuators, the possible actions;

5

4. query the database of metadata about devices to get the configuration of the installation
(a friendly name to display, location and other tags associated with each device);

5. query the cache for the latest known states of such equipment;

6. dynamically build display screens and control interfaces for these devices.

2.2 Hardware Architecture
The interest of such a functional distributed architecture is to allow greater freedom regarding
the placement and grouping functions on hardware.

For example:

• A manufacturer of automation equipment could sell a box that would include: the gateway
for its own home automation protocol, the repository of schema for equipment of its brand,
a cache for equipment managed by the gateway, some automata of scenarios to implement
virtual devices, and a small metadata database for its own devices to record their location.

• A provider of automation services could sell a box (different from and complementary
to the first one) that would include: a database for location of devices, automata of
scenarios, web interfaces, REST connectors to communicate with servers in the cloud to
offer enriched services, etc.

• A provider of virtual services (i.e selling only service and no equipment) could provide
an application for smartphone or tablet that embarks: a user interface, an automaton of
scenarios, a connector to its external servers for advanced services, etc.

• A provider of services dedicated (for instance) to assistance for seniors, telemedecine, etc.
could offer its box (yet another one) that would include: a gateway for specific equipment
(medical, remote alarm, etc.), automata of scenarios for monitoring&alert, an interface
to its external servers, etc.

• A manufacturer of innovative connected objects (Internet of Things) could sell these
connected objects which would embark: the sensor/actuator component itself speaking
natively in xAAL, the repository of schema describing the object itself, automata of
scenarios, an interface to its external servers, etc.

• Services or scenarios a bit complicated (e.g., based on actigraphy, or composition of
adaptive services, etc.) could be made of automata of scenarios, linked to a cache, linked
to a database of metadata.

The reliance on IP as a means of interconnection and this lightweight protocol allows,
hopefully, flexibility and better interoperability between these different actors who have nothing
else than xAAL message to disclose to competition.

The really hard point is the definition of schemas and the rigor with which implementations
comply with.

3 The Transport Layer
It uses IP multicast (IPv4 and/or IPv6). Thus, it is in UDP.

• The multicast IP address has to be defined.

6

• The port number has to be defined. We reserve a range of ports numbers.

• If there are several "home networks" in the building, they use different ports.

• Messages may have a size limited by UDP (i.e., 65507 bytes in IPv4, and more than
65535 with IPv6 jumboframes). IP fragmentation operates normally. (As opposed to
approaches such as xPL that limit to the MTU (1500 bytes) and propose continue flags.
IP fragmentation already handles this very well.) Remains the problem that some PICs
do not necessarily manage well the IP fragmentation (e.g., the basic IP stack for Arduino).
We only recommend trying to be limited to 1500 bytes. If services are willing to exchange
larger amounts of data between devices, they are asked to leave the automation bus (which
is not made for it) in favor of another transmission channel (e.g., A TCP connection),
that they can advertise via the xAAL bus.

• The IP configuration of devices is outside the scope of xAAL. Equipment can use a static
IP configuration, DHCP, the IPv6 Router Advertisement, Zeroconf, a Link-Local address
(169.254.0.0/16, fe80::/64), etc.

Note however that thanks to the use of a multicast bus, the source address of the trans-
mitters doesn’t really matter (and is actually not used in our case). Some equipment
might be configured with a phony hard-coded IP address...

• Note for developers: please avoid horrible stuff that have been seen with implementations
of xPL or xAP buses (often in Java or .Net) regarding the use of a "hub": that piece of
software that repeats messages from bus to applications running the same machine. This
is useless on almost all current operating systems: applications on the same machine may
without problem have their own socket on the multicast bus, as long as dedicated socket
options are used (typically SO_REUSEADDR and IP_MULTICAST_LOOP)...

• The choice of IP multicast IP almost imposes the UDP protocol. As UDP does not
manage the detection of packet loss and retransmissions, there could have been more
comfortable to choose TCP. For people not convince by the UDP protocol:

In the context of a network at home, it can be assumed that packet loss, though still
possible, is a priori rather rare.

By design, xAAL has little requirements regarding error processing (cf. 8.3). From this
point of view xAAL seems rather robust.

Using TCP to manage packet loss only shifts the problem to the protocol stack (and in
a heavy way: it is systematic for all messages, and the TCP automata TCP consumes
resources). With xAAL, if one need error processing for some scenarios (which, finally,
is not necessarily systematically required) this will be at the services layer (located on
equipment which generally has comfortable resources).

4 The Data Presentation Layer
It is a question of deciding if the data transmitted by the xAAL bus are rather of textual
nature or either of binary nature.

This point was the object of a debate within the team, where two schools of thought wonder.

7

4.1 The Binary Protocol approach
The main motivation is to stay at a low level: a protocol which can be coded within a PIC
(e.g., in traditional C), rather than a sophisticated middleware coming from the PC world and
web applications.

It does not necessarily mean compact or compress messages, but simple messages easy to
write and parse (by cast to C data structures), self-sufficient, in a constrained format, with a
constraint variability, a predictable size, etc.

More concretely we would decide to only manipulate 32-bit words, aligned on 32-bit (i.e.,
with padding if necessary).

The disadvantage is that the debugging stage of messages is more complicated than a textual
approach, because a validation tool for analyzing the exchanged frames is needed. The other
drawback and that it is too far from trendy techno (around Web), and it will be a priori more
difficult to entice a community.

Finally, this is not the approach that was chosen by the team for the implementation of
xAAL. However, a draft of specification has been defined and is available on request, this is
the version 0.1-bin.

In the future it might be interesting to look at the Mihini/M3DA protocol to do this...

4.2 The Text-Based Protocol approach
The advantage of a text-based protocol is that developers only need to check the frames ex-
changed.

The disadvantage is that the messages are more complex to build, and even more compli-
cated to parse.

The adopted compromise was to choose Json as exchange format of data. Many libraries
are available in many development environments.

Furthermore, it is rather close to the Web World, and as the last generations of IT specialists
were massively and firstly formed to the technologies of the Web, we can hope for a better
membership with this public, as well as with certain public of decision-makers...

This approach was experimented in the previous implementations of xAAL made by the
team (version 0.1-json). The specifications in the following document are based on a text
protocol approach and extend to describe the current version 0.3.

An interesting variant would be to use certain aspects of CoAP1 (or a subset)... To consider
for the future... even if the proximity to the Web World appears nevertheless of a limited
technical interest...

5 Definition of a device
A device has:

• a devType: references the schema and defines the type of the device. It is hard-coded
into the device.

– This schema identifier is a string consisting of a pair of words separated by a dot.
∗ The first word refers to a class of device type (e.g., lighting, heating, multimedia,
etc.).

1https://datatracker.ietf.org/doc/draft-ietf-core-coap/

8

https://datatracker.ietf.org/doc/draft-ietf-core-coap/

∗ The second word refers to a type in a given class (e.g., within the lighting class
one may have an on-off lamp, a lamp with dimmer, a mirror ball, etc.). The
second word may also refer a schema extension by a manufacturer (cf. 6.1).

– The identifier "any.any" is reserved and refers to all types of all classes. This is a
virtual type; no one can clame to be of type "any.any". Devices having no dedicated
attribute, method or notification may use the type "basic.basic" which is a concret
type that simply inherit of "any.any".

– For example the pair "lamp.any" means all types of the class "lamp". This is also
a virtual type; if needed, the concret type "lamp.basic" is provided.

– We reserve a special name: "experimental", for the class, as well as the type. This
are concret types to which may belong devices. Associated schema, if written, should
not be distributed outside the testing plateform. (I.e. When someone makes a device
but has not got a name for our xAAL International Standardization Office.)

• An address: a device ID, unique on the bus.

– The device identifier is a UUID (RFC 4122): the textual representation of a 128-bit
random number.
For instance: 634c4471-bc3e-47f2-8cd3-eadfc08c6c6a

– Addresses are self-assigned. There is no "naming service" nowhere. A device does
not request any entity to get an address.
Well, concretly, how is assigned an address?

∗ Either, this is hard-coded in the factory.
∗ Auto-generated (random) at the time of installation. However, it is recom-
mended that this address remain persistent: i.e., please save it (if possible)
during power breaks.

∗ There are in principle very high probability of having no collision of UUIDs.
However, it is technically possible to verify that an UUID is not already used
on the bus by a kind of "Gratuitous ARP", i.e., by isAlive requests to ensure
that no one else already use this address.

∗ But certainly not assigned by a bus supervisor/coordinator or something like
that!

• An equipment may consist of several devices. This is typically the case of a gateway.
(E.g. An equipment which is going to make the bridge between our xAAL bus and
X10, Zigbee, X2D, Z-Wave, HomeEasy, KeeLoq, etc.) But it may also be the case of
a small weather station with several sensors that measures indoor/outdoor temperature,
humidity, etc.

– Such equipment is then called a composite device,
– and each of its components is an embedded device.
– The composite device announces (possibly) itself on the bus with its own address

and its own schema name. Others can interact with him specifically (e.g., for its
configuration, consult battery level, etc.).

– The composite device announces the list of its embedded as its childrens (their
address).

9

– Each embedded is also announced on the xAAL bus like an ordinary bus-native
device, with its own address and its own schema name. Embedded may be question
about their parent, i.e., the composite to which they are linked. (Note: the real
bus-native devices have no parent).

– A composite device can also choose to be not visible, do not announce itself, nor
indicates that it has embedded devices, nor that those embedded devices have it for
parent.

6 Defining a Schema (the type of device)
Each device is typed, i.e., described by a schema. Those schemas are inspired by the UPnP
approach.2. A xAAL schema is a Json object with a specific form that must validate a given
Json Schema3.

• The schema provides a bit of a semantic to a device and describes its capabilities: a list of
possible methods on this device (mechanism of request-reply), a list of notifications that
it emits spontaneously, and a list of attributes that describe the operation of the device
in real time (the device announces change of values on the bus).

• A list of methods. Each method is described by:

– a unique name which identifies it within the schema;
– a textual description (see later how to handle the language and issues of internation-

alization);
– A list of arguments, each argument is defined by:

∗ a name uniq within the method definition;
∗ a direction, a string among in out inout;
∗ the unit (in the sense of the International Bureau of Weights and Measures...);
a string to be displayed in HMI;

∗ a textual description;
∗ a type definition (according to Json Schema dialect) used for extra processing
(e.g., to dynamically build an HMI).

– A list of related attributes that may be affected by the method (e.g., to be refreshed
in an HMI after the method call)

• A list of notifications. Notifications are messages that the device emits by itself on the
bus. These notifications are defined by:

– a name
– a description
– a list of variables (name, unit, type)

• A list of attributes. If the value changes, this spontaneously generates a notification to
the bus. Each attribute is defined by:

– a name
2http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf, chapter 2.
3http://json-schema.org/

10

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://json-schema.org/

– a description
– the unit
– the type

6.1 Inheritance of schemas
There is a notion of inheritance between schemas. A schema can extend an existing schema.
We define the first 3 levels of this genealogy:

1. A generic schema common to all existing devices of the world that everyone has to im-
plement.

2. A specific schema for every class (e.g., lamp, thermometer, switch, etc.). Such specific
schemas thus inherit from the generic schema.

3. A specific schema for each type that inherits from a class schema, which indicates the
level of functionality (e.g., a lamp type can be on/off, some are of a trigger type, and
others with dimmer...)

4. Thereafter, manufacturers of home automation equipment will naturally define their own
schemas among their product range. However, it is forbidden for these manufacturer
schemas to be defined as level 1 schemas (the generic schema is the only one), or as
level 2 schemas (class schemas). Schemas from manufacturer are necessarily extensions of
schema from level 2 or higher. About the naming of schema (the pointed pair described in
5), the second word is then left with the discretion of the manufacturer. (Manufacturers
frustrated by this situation are cordially invited to discuss with our Standardization Office
if they wish to introduce new schema at level 2 or 3.)

Note: please think, while listing the APIs of devices described by these schemas, that some
devices will not be able to listen to the bus and will only emit notifications changes of their
attributes.

Semantic of a schema extending another schema:

• The new schema may introduce new attributes, methods, and/or notifications. The re-
sult of the extend operator is a new schema that contains all attributes, methods, and
notifications of the former schema, plus the new ones introduced by the latter schema.

• The new schema may overload the definition of some existing attributes, methods, and/or
notifications. An overloading means that objects has the same name and a different
definition. In such a case the resulting schema contains all new objects plus old ones
that has not been not overloaded. In other words, the new definition replace the old one,
without any attempts to merge them.

6.2 Naming of Schemas
The naming of schemas has to be done carefully in order to maintain as much as possible the
consistency of things in the minds of everyone... In too many systems (e.g., xAP xPL), the
name of devices and their typing is regularly misused to put concepts that do not have their
place in it.

11

What is a schema. Two things: It is hoped that the schema name refers above all to the
functionality of the device, means to interact with it. Secondary, this name must also give an
idea of the nature of the sensor.

What is not a schema.

• The name is not supposed to refer to a technology of manufacturer (and even less to a
specific model).

• The schema name must not refer to a given use: a door contact switch (that transmits
"open/closed" notifications) can be used both for safety (on windows or on the main
door) as well as for actigraphy (on kitchen drawers); in the same way a thermometer
(that sends notifications of temperature) may be dedicated to a weather station or to the
management of heating. So there are no reasons to have categories like security or hvac
(Heating, Ventilation and Air-Conditioning)! These are chapters in a catalog of sale of a
manufacturer, not categories of functions of home automation equipment. If wanted, the
role associated with a sensor (security, heating, etc.) is recorded as a tag in the metadata
database.

• One shall avoid carefully junk categories such as the "software" type (that already is
seeing!). Obviously there will be a number of software components. Also, some equipment
will be purely software (e.g., an application such as a web-radio on a PC). The fact that
the component is in soft rather than in hard has no interest from the xAAL point of
view.

7 Generic Schema
This is the basement of every schema. All other schemas have to inherit from it somehow. It
is named any.any.

• Attributes:

– ...attributes involved in the protocol...
∗ devType: the name of the schema to which the device obeys;
∗ address: a string, an UUID (the address of the device);

– ...attributes describing the device...
∗ vendorId: string, the Id of the vendor assigned by the xAAL bureau;
∗ productId: string, an Id of the product assigned by the vendor;
∗ version: string, version or revision of the product assigned by the vendor;
∗ hwId: free json type, some hardware Id of the device (e.g., low-level addresses,
serial number);

∗ parent: a string, an UUID (the address of the parent devices in the case of an
embedded, or the empty string if not);

∗ childrens: an array of strings (the adrresses of the childrens devices in the case
of a composite, or the empty list if not);

∗ url: string, the url of a web site with extra information (and possibly the content
of the schema to download).

∗ info: string, any additional info if any about this device. (E.g., on the ther-
mometer of a weather station, this may indicates that that this is the indoor
thermometer.)

12

∗ unsupportedAttributes: an array of strings (hopefully empty), with names of
attrbutes of the schema that are actually not supported by the device for some
(bad) reason.

∗ unsupportedMethods: an array of strings (hopefully empty), with names of
methods of the schema that are actually not supported by the device for some
(bad) reason.

∗ unsupportedNotifications: an array of strings (hopefully empty), with names
of notifications of the schema that are actually not supported by the device for
some (bad) reason.

– ...attributes for accessing to the bus...

∗ busAddr: a string specifying the IPv4 or IPv6 address of the xAAL bus used
by the device. Well, this value is obvious since one is talking to the device via
this bus;

∗ busPort: an unsigned integer (well, limited to 65535), indicating the UDP port
of xAAL bus;

∗ hops: an 8-bit unsigned integer indicating the number of hops used for sending
multicast packets;

∗ ciphers: a array of strings among "none" "md5" "sha256" ..., the list of
supported ciphers.

∗ key: a string, the cryptographic key for encrypted communications.
– Note: the attributes of any.any are mostly considered as internal, or dedicated

to the configuration of the device. Unlike attributes of derivated schemas, they
are not supposed to be involved in the attributesChange notification nor in the
getAttributes method described bellow. They are managed via specific ways.

• Notification:

– alive: emitted when starting the device and then periodically at a rate left to the
discretion of the device. The notification message contains no parameters, the body
is empty. (See the definition of messages below.)

– attributesChange: emitted at every change of one of the attributes. The body of
the message contains only attributes which changed.
A schema gives the list of all possible attributes that may appear within this noti-
fication message. So, in a given message, some of those attributes may be present,
some other not. This is normal.
However the generic schema defines this method with no attributes, since the default
attributes defined above are dedicated to the configuration of the device, and do not
characterize the real-time operation of a specific feature.

– error: issued when the device detects an error.
∗ description: the textual description of the error
∗ code: a numeric code of the error.

This is intended to be overridden in the definitions of specific schemas.

• Methods:

– isAlive

13

∗ devTypes (out): an array of devType strings, giving names of the schema of
devices that should wake up.
One may have ["any.any"] to wake up everybody, or ["lamp.any"] to wake
up all lamps, or ["lamp.basic", "lamp.dimmer"] to wake up just those types
of lamp, or ["lamp.dimmer", "gateway.zwave"] if we are interested by that,
etc.

There is no response messages addressed specifically to the sender of this request. In-
stead of this, recipients(s) must respond as much as possible by an alive notification
addressed to all.

– getDescription

∗ vendorId productId version hwId parent childrens url info unsupportedAttributes
unsupportedMethods unsupportedNotifications (out): see the meaning in
the above list of attributes.

– getAttributes

∗ attributes (in): an array of string, the name of the wanted attributes. If the
array is empty or if this parameter is absent within the request, this means one
wants all attributes to be returned.

∗ <key-values of attributes> (out): Attributes actually returned. The generic
device defines this method with no attributes. However this method will be
overridden in the definition of specific schemas of each device in order to list all
attributes that could be returned by this method.

∗ Note that this is not mandatory to return all requested attributes. Peers should
not make any assumption on this.

∗ The reply may indicate specific error codes: for instance a device may be not
fully initialized at startup, or may having detected that its physical sensor is
not responding; in such a case the device may reply to an early getAttribute
request by returning the corresponding attribute but while adding in the error
section that the corresponding value is suspicious/stale/cached...

∗ Attention: devices do not return the attributes devType, address that are any-
way in the header, nor attributes returned by the getDescription, nor at-
tributes used for accessing the bus.

– setBusConfig

∗ busAddr (in/out): a string specifying the IPv4 or IPv6 address of the bus on
which xAAL is supposed to switch.
If the returned address is not the sent one that means that the device could not
be set with this address (in short, there is an error, and an error notification).

∗ busPort (in/out): an unsigned integer (well, limited to 65535), indicating the
port on which the xAAL bus is supposed to switch.
Similarly, if the value returned is not the one that had been sent, is that there
was an error.

∗ hops (in/out): an 8-bit unsigned integer indicating the hops used for sending
multicast packets.
A priori we put 1 by default, but it seems normal to leave the option of setting
it too.

– getCiphers

∗ supportedCiphers (out): an array of strings among "none" "md5" "sha256"
etc.: the list of ciphers supported by the device.

14

{
"header":
{
"version": "0.4",
"source": "bd081741-ceb6-41eb-87e0-6628d4959657",
"targets": ["83c84e87-a230-4245-8829-f788fa6365a0"],
"devType": "hmi.basic",
"msgType": "request",
"action": "getAttributes",
"cipher": "none",
"signature": ""

}
}

{
"header":
{
"version": "0.4",
"source": "83c84e87-a230-4245-8829-f788fa6365a0",
"targets": ["bd081741-ceb6-41eb-87e0-6628d4959657"],
"msgType": "reply",
"devType": "thermometer.basic",
"action": "getAttributes",
"cipher": "none",
"signature": ""

},
"body":
{

"temperature": 9.3
}

}

Figure 2: Example of xAAL messages

∗ enabledCiphers (out): an array ov ciphers that are actually enabled.
– setCiphers

∗ ciphers (in/out): an array of strings among "none" "md5" "sha256" ... plus
keywords "all": the list of ciphers to supported now (used to enable/disable
some ciphers).
The array returned is the list of ciphers that were actually enabled. (It may be
different of the requested if some are not handled by the device.)

– setKey

∗ key (in): string; This is the easiest way to configure the cryptographic key used
for encrypted communications. Since allowing changing the security key by
network may introduce security issues, some device may decide to always ignore
this request or report an error...

8 Definition of a message
A message consists of a header and a body. The header is mandatory, while the body is optional.

Figure 2 gives an example of xAAL messages.

8.1 Header
The header of a message includes:

• version: The version of the protocol. This document describes version 0.4.

• source: Address of the sender of the message.

• targets: An array of destination addresses of the message.
Note that the array may be empty, which means the message is of broadcast type. The
receivers (thus everybody) are invited to consider this message. Notification messages are
often of broadcast type, but not necessarily. In contrast, response messages are addressed
specifically to the address of the requester.

• devType: The schema name (the pair classe.type) of the sender.

• msgType: The type of the message among request reply notify. Thus, typically, a
message request is followed by a reply if it is necessary to return values to the requester

15

(or a broadcasted notification if it is more useful from the application point of view.) Note
that the specification does not define any sequence number or nor id for request-response...
Inconsistencies may happen; it is discussed below.

• action: The name of the action brought by the message from the list of methods and
notifications described in the schema whose name is indicated in the message.

• cipher: The safety mechanism used in the message. So far the none mechanism has been
defined...
In the future we may consider signing/ciphering mechanism using well-known algorithms
(HMAC SHA AES...), with a key shared across the bus.
One can also consider asymmetric encryption such as PGP (or SSH); the private key of
each device being hard-coded, and public key written on a sticker on devices and shared
in the bus (and signed by the owner of the installation)...
See below for a discussion on the subject.

• signature: the signature of the message by the selected signing algorithms...

• timestamp: an positive, the date of the message in seconds since 1970-01-01 00:00:00
UTC. This parameter is optional and is dedicated to security to avoid the replay of
messages. Devices may consider an acceptance window, e.g., 5 seconds.

8.2 Body
The body contains parameters and values for queries, responses and notifications, if needed.

The body is optional: it depends on what has been defined in the schema for the considered
action.

8.3 Cases of error
The spirit of the xAAL specification is primarily to focus on interoperability. It is guided by
the will to propose, not to constrain... Consequently xAAL has very few safeguards against
the failure. It is the responsibility of developers of xAAL components to do the best they can.

The specification says nothing about the lack of response. On the one hand, since it is UDP,
the query as the answer may be lost. On the other hand, there are devices that only know
how to emit but not to listen to on the bus. The specification does not impose any timeout
mechanism: some device does not necessarily have a clock at hand and can manage responses
to requests in a circular buffer (and if a reply arrives so late that we forgot question, too bad)...

Another argument concerning the non-response to a request: in the case of a non-unicast
query (i.e., actually a broadcast one or on an overall class type), it seems natural that devices
unable to honor the request may choose to remain silent rather than solicit the bus with error
messages.

In some cases one may wants to ensure that messages are not lost (e.g., alarm, urgency).
Since the loss is not supported by the xAAL protocol layer itself, this can be supported by the
application above. Several strategies can be considered:

• After an action request to a device, the requester questions the target device to see if
there has been a change in its attributes;

• The API of a request includes an ad-hoc parameter (e.g., requestId) that the device has
to repeat in its answer;

• etc.

16

The cases of error or inconsistency are possibly many. The specification does not impose a
specific behavior. So, in case of inconsistent message, duplicates, divergent answers or notifica-
tions, the behavior is unspecified. (Please do not make any assumption on error recovery.)

One might want to declare nevertheless that, faced with a poison message, there is the
obligation to reject it, to ignore it. Unfortunately, for some equipment, it is not possible to
undo what it started to do (not enough memory or partial action). In short, the specification
imposes nothing. If the error can be recovery, fine, do it! Otherwise, don’t worry! The
developers have the responsibility to be careful, and do the best.

For example, in some cases it is relatively easy to decide:

• A device receives a request but the name of the method does not exist in the schema. It
can easily identify the problem and ignore the request.

• A device receives a request but some parameters are missing, or of the wrong type.
Depending of the context, it may have started to partially fulfill a number of tasks for
the requested method and may end up in trouble. Maybe, it cannot undo what he began.
Therefore, no one can impose it rejects the message. If he does, that’s fine. If not, too
bad. At the most, it sends a relevant error code.

• Conversely, if there are missing returned values in an answer, or of the wrong type, the
device that initiate the request may have started to partially process the response... It is
asked to at its best.

• If the schemas are written carefully, they can provide a number of messages error. But
this is the responsibility of schemas, not of the xAAL bus.

Software developers must be aware that xAAL is not a transactional system nor a remote
procedure call system. (Well, not quite.) xAAL is much more lightweight. It is a basically
stateless system. One sends a request to a device; some time later one may get an answer (or
not); from time to time the device may detect an error (based on a faulty request or something
else) and notify others... There is actually no formal relation between requests, answers and
errors. As a consequence, there is no reason (or few) to wait for an answer or an error message
after sending a request. Do not implement state-machines that keep the past in memory and
expect something specific in the future. So, software developers should implement basic reactive
systems, without states (or very lightweight).

9 Security
In preliminary work, we have not proposed a model for security mechanism. Today, security
seems to be required. This section draws some perspectives.

Let us consider an infrared remote control: the RC5 link (or RC6) is not encrypted. To
hack the transmission between the remote and the TV, it is necessary that the neighbor can
aim with its own remote control through the window of the living room. These are the walls
of the room which insure the safety of the transmission, not the protocol itself.

It is the same for IP protocols: it is necessary to be already present on the network to
be able to attack it. It is necessary to be physically plugged to wire with Ethernet; WiFi
connections have (usually) WPA keys that one have to know; remains powerline adapters for
which encryption if available but rarely enabled (or with the predefined key)...

And finally, to contrast, think that the firewall configuration of the home network can be
bad, or a PC on the network can be compromised by virus...

So, one can do something...

17

9.1 Need for security
When one talk about security, one must first define against what one need protection. In our
case, it is not a question of dealing with cases of failure, but rather cases of malice.

Among the classical precepts for security (integrity, confidentiality, availability, non-repudiation,
authentication), what does one need?

At least, it is necessary to ensure the authentication of messages sender, that messages are
not corrupted, and that replay can not be done.

Remains the issue of confidentiality: a priori this does not necessarily matter if the neighbor
can listen (as long as he cannot inject false messages). However, this can be annoying for certain
use-cases: this can be a problem if others may be informed that the alarm control is switched
off, or when the door is unlocked...

On the other hand, it is necessary to keep in mind that one may have very simple devices
and that encryption mechanisms are resource-intensive.

In addition, to implement this it is necessary to go through a configuration stage (to set
up encryption keys). This can be complex. (One can have a look at automatic configuration
mechanisms for WiFi key, such as WPS, or the association-button for HomePlug AV)

9.2 Proposals for security
• "cipher":"none": it is necessary to keep the possibility of communicating without en-

cryption, just for all those devices that are too light to embed encryption mechanisms
and configuration keys.

• "signature":xxx: a signature mechanism with a conventional hash function (MD5 SHA1
SHA-256 SHA-512 Blowfish...) with a shared key. This ensures authentication and in-
tegrity. On the other hand it implies to manage the configuration of device to set up this
key.
Using a pre-shared key seems acceptable in the context of a home network: it is the choice
of WiFi WPA/WPA2 Personal and of HomePlug AV Powerline.
Another approach is to use asymmetric key mechanisms: the private key being hardcoded
into the device, its public key is written on a sticker on the device, with a mechanism for
sharing a signature of these keys by others (like PGP).

Nevertheless, to avoid replay it must be added in the signed message a little something
that makes it unique... For this, a timestamp can be added (RFC3339). Or, the schema
of the device can provide a mechanism for challenge-response: first ask the device for a
cookie, and then return it in the next message by signing it. Such a mechanism has its
right place in the schema of the device, not in the xAAL protocol itself.

• Confidentiality: it implies encrypting the information in the message. There are two
possible approaches:

– This can be specified not by xAAL but in the schema of the device that needs it:
one exchanges a public data parameter, but the value is encrypted.

– Another approach would be to redefine the message format by adding a new body
block which will be fully encrypted.

At the moment, all this is still embryonic. However, the general idea is that security must
be possible but optional.

18

9.3 Preliminary tests

Nowadays a signing mechanism has been implemented and tested.
It use HMAC SHA256 on messages, with the "signature" parameter previously padded

with zeros. The signature is then encoded in hexadecimal. Then the signature is replaced in-
place within the message. (I.e., without reusing a json library since some library may reorder
json parameters or add spaces.)

The key is computed from a passphrase using PBKDF2 HMAC SHA256 with 4096 iterations
and the null-terminated string "xAAL" as salt.

A timestamp is added. A typical acceptance window is of 5 seconds.
It looks fine. However this adds complexity: devices must define a list of supported ciphering

methods, a list of enabled ciphering methods to accept messages, the ciphering method used
to send messages, and an acceptance window regarding timestamp of received messages... This
experiment leads us to think that only one security method should be specified, not several at
a time.

This experiment was only about signing. Future experiments will consider encryption,
probability with Poly1305/ChaCha20 and the timestamp reused as the nonce... However, early
adopters of xAAL should be aware that the message structure may be rearranged to support
the encryption...

10 Best Practices
The xAAL specification in itself allows numerous of things, good and bad... Along preceding
pages some suggestions of good practice were discussed. They are grouped here.

10.1 Composite Device

In the home automation domain, it is common to find devices which include several functions
in one unit: e.g., thermometer, door opening sensor, pilot wire (this is a real case).

With xAAL this is organized around the notion of composite device. (See it as a way to
manage multiple inheritances...) This device is then going to expose as many xAAL devices
as elementary functions. In the example here: a device with the thermometer schema, a device
with the door opening schema, a device with a pilot wire schema.

Furthermore, the device may exhibit itself (with a specific schema or else with the schema
basic.basic), whose sole function is to list its embedded devices as its childrens (give ad-
dresses). The fact of exposing itself is not mandatory, it is only recommended: it does not
provide any functionality from the home automation point of view, but it allows expressing the
hardware architecture, which can aid in the diagnosis and maintenance.

N ote: The schema of a composite device may indicates the list of the required schemas of
embedded devices by using the optionnal key used_embedded. This is at the schema level, as
additional information (compares to the run-time level when a composite is questioned about
its embedded).

Fore instance, the schema of a specific weather station (e.g. called "weatherstation.foocorporation")
may have "used_embedded": "thermometer.basic", "thermometer.basic", "hydrometer.basic".
This means that a device of the type "weatherstation.foocorporation" embeds two thermometers
(e.g., an indoor thermometer and an outdoor thermometer) and an hydrometer.

19

10.2 Gateway
Let us summarize the role of a gateway:

• Transform xAAL messages into messages of a home-automation protocol of a manufac-
turer, and vice-versa;

• Manage the pairing between itself and manufacturer devices;

• Manage the configuration of these devices (e.g., Z-Wave being bidirectional, it is the so-
called "Z-Wave base" which pushes certain parameters towards devices: here the xAAL
gateway plays then the role of the Z-Wave base, so it manages these Z-Wave parameters
but does not exhibit them on the xAAL bus);

• Expose the devices of the manufacturer on the xAAL bus with their xAAL address and
their xAAL schema;

• Do the mapping between the xAAL addresses and the manufacturer addresses;
Note that this mapping can be useful in the configuration of the database of metadata.
(For instance when the power is reconnected after installing some automation devices: all
will appear in a mess on the bus... It is thus necessary to identify which is which.)
For this purpose, the attribute hwId (hardware Id) of devices should be filled with some-
thing suitable to clearely settle who’s who from a physical point of view. The attribute
hwId is returned by the getDescription method of a device. The specification does not
formalize the type of this attribute. It is not supposed to be processed by softwares, but
rather to be displayed to humans, typicaly to administrators who are in charge of the
mantenance and have to retrive devices in the house (or in the walls, cellings, etc.).
Therefore hwId should indicate the address of the underlying/manufacturer protocol, a
serial number, an ethernet address, or something like so.

• Do the translation between the functions of manufacturer devices and methods described
in xAAL schemas;
This translation is supposed to be fairly straightforward, since the gateway is almost
transparent in this point of view.

By design, a gateway is a composite device having plenty of childrens. This is a somewhat
more sophisticated than the simple composite device previously described, but it is a device
that should exhibit itself as such on xAAL bus.

There is the case of gateways that handle manufacturer devices that are themselves com-
posite.

Let us take the case of the «Door / Window Sensor 3 in 1 FIB-FGK-101».4 This Z-Wave
equipment does: door/window opening detection, thermometer, digital data relay (to connect
an add-on). The Z-Wave gateway will therefore exhibit on the xAAL bus:

• A door opening detection device (with a schema "opening detection" and its own xAAL
address);
This device has for parent the composite device described below.

• A thermometer device (with the schema "thermometer" and his own xAAL address);
This device has for parent the composite device described below.

4http://www.planete-domotique.com/autres/par-technologie/zwave/capteur-d-ouverture-3-en-1-fibaro.
html

20

http://www.planete-domotique.com/autres/par-technologie/zwave/capteur-d-ouverture-3-en-1-fibaro.html
http://www.planete-domotique.com/autres/par-technologie/zwave/capteur-d-ouverture-3-en-1-fibaro.html

• A device "digital data" (with the schema "digital data" and his own xAAL address);
This device has for parent the composite device described below.

• A composite device (with the schema "basic.basic" and his own xAAL address);
This composite device has for childrens the previous three embedded devices.
Moreover, it has for parent the gateway described below.

• A gateway device (with the schema "gateway" and its own xAAL address);
This composite device has for childrens the previous four devices.
It has no parent.

10.3 Virtual Device
In the functional xAAL architecture, the automata of scenarios are an ideal place to implement
"intelligent" home-automation services. For example:

• When an order is received, trigger a whole series of actions (e.g., "evening of TV".)

• Or conversely, by correlating a variety of events, synthesize information (e.g., "Presence
of a user" or "Water tap left open").

In so doing, the automata appears then itself on the xAAL bus as being a device. It is a
virtual device, but a device with its own methods, notifications, attributes: in brief, is defined
by a schema and other entities can interact with it via the xAAL bus.

The fact that it is virtual has no impact from the xAAL point of view. It is a device like
others.

10.4 Device Overloading another one
A home automation system may have multifunctional devices.

Let us consider for example the "Micro-module Z-Wave Switch FGS-211". 5 This equipment
has a size studied to be inserted into a wall outlet and is able to control any electrical device
(lamp, fan, shutters, etc.).

This type of micro-module, more and more common, provides complex functionality. This
is what says the catalog about this one:

• On/off relay controlled by Z -Wave or connected buttons;

• Can use 1 or 2 buttons (the second optional button can control one or more other modules
associated with Z-Wave);

• The buttons can be bistable (on/off) or monostable (pulse pushbutton);

• Report state via Z-Wave.

Therefore, the Z-Wave gateway that supports it will exhibit on the xAAL bus the following
devices:

• A device of type relays with state feedback (with the schema "relay", and its own address)
corresponding to the electrical device connected to it and thus controlled by the micro-
module (but at this level it does not say if the controlled electrical device is a lamp, a
fan, a shutter or something else);

5http://www.domotique-store.fr/domotique/modules-par-types/micro-modules/
19-fibaro-fgs-211-relay-switch-module-micro-module-zwave-switch-relais-simple-on-off.html

21

http://www.domotique-store.fr/domotique/modules-par-types/micro-modules/19-fibaro-fgs-211-relay-switch-module-micro-module-zwave-switch-relais-simple-on-off.html
http://www.domotique-store.fr/domotique/modules-par-types/micro-modules/19-fibaro-fgs-211-relay-switch-module-micro-module-zwave-switch-relais-simple-on-off.html

• A device of type button (either with the schema "bistable", or either with the schema
"monostable" according to the chosen configuration), and correspondent in the second
optional button (since the first button is used for the manual command of the relay);

• And possibly a composite device embarking the two previous ones.

However, one misses the information of configuration saying that behind this module this
is a lamp which is controlled and not a fan nor a roller blind.

To do this, one will define a new xAAL entity, a new device that will expose the "lamp"
schema and that will do the translation between actions on this "lamp" device and actions on
the "relay" device described above. This new device is a virtual in a way, but mostly it just
overloads the generic device. So, this can be called an overloading device. (And from the xAAL
point of view it has as parent the preceding generic device.)

Note that since it is the gateway that exposes this new overloading device, this gateway is
not completely transparent in our architecture: it must be configured to set up how generic
devices are overloaded. We believe that these configurations should be located in the gateway
and not in (for example) in the metadata database. Indeed, it is the setting of inner workings
of the device, not an attribute which just tag it.

Strictly speaking, a gateway that will handle a generic micro-module should therefore expose
on the xAAL bus two devices: the generic one plus the overloading one. However, for reasons
of simplicity for implementation (and also because we know how are the developers), it is quite
acceptable that the gateway makes the economy of the generic device and only expose on the
xAAL bus the overloading device.

10.5 Hidden Device
Some devices are not intended to be presented in user interfaces. This is the case of gateways,
composites, automata of scenarios, metadata databases, caches, interfaces themselves, generic
devices that are masked by an overloading device, etc.

One should not make assumption of which device should be hidden or not. This property
(if needed) should be an explicit tag within the metadata database. (Possibly with a default
value according to the class diagram, but a tag that can be changed later.)

User interfaces know all devices (hidden or not), but choose to display only those that are
not hidden unless the user explicitly requests it (like in a file manager on your PC you can
choose "show hidden files").

This information (to specify that a device is hidden or not) could be just local to the HMI
and be managed locally inside the HMI. However, we think this is specific to the automation
system and must be stored in the metadata database and available to all.

11 Acknowledgments
We wish to thank Maria Teresa Segarra, Corinne Le Moan and Florian Le Nestour for their
active participation in the work on xAAL.

22

A Draft of Schemas
Here are some general ideas on the content of schemas of devices.

Notes:
- a:attribute
- m:methode
- n:notification

any.any (the generic schema)
=======
a:devType
a:address
a:vendorId
a:productId
a:version
a:hwId
a:parent
a:childrens
a:url
a:info
a:unsupportedAttributes
a:unsupportedMethods
a:unsupportedNotifications

n:alive()
n:attributesChange(out v:+)
n:error(out description, out code)

m:isAlive(in devTypes)
m:getDescription(out vendorId, out productId, out version, out hwId,
out parent, out childrens, out url, out info,

out unsupportedMethods, out unsupportedNotifications,
out unsupportedAttributes)

m:getAttributes(in attributes, out a:*)
m:getBusConfig(in/out busAddr, in/out busPort, in/out TTL)

lamp.basic (extends any.any)
==========
a:light(bool)
m:on()
m:off()

lamp.dimmer (extends lamp.basic)
===========
a:dimmer(float, precent)
m:dim(in/out float level)

lamp.rgb (extends lamp.queryable)

23

========
a:level {red, green, blue} (float, precent)x3
a:mode [fixed,shuffle]
m:dim(in/out float red, green, blue)
m:setMode(fixed|shuffle)

shutter.basic (extends any.any)
=============
a:position (open|closed|opening|closing)
m:up()
m:down()
m:stop()

door.basic (extends any.any)
==========
a:position (open|closed)

locker.basic (extends any.any)
============
a:position (locked|unLocked)
m:lock()
m:unLock()

mediaplayer.basic (extends any.any)
=================
a:activity (play|pause|stop)
a:destination (address of the mixer)
m:play()
m:pause()
m:next()
m:previous()
m:stop()

mediaplayer.spotify (extends mediaplayer.basic)
===================
v:url
m:playUrl(url)

audiomixer.basic (extends any.any)
================
a:source(address of the player)
a:volume(percent)
m:setSource(addr)
m:up

24

m:down
m:mute
m:unmute

25

	Motivation
	General Architecture
	Functional Architecture
	Hardware Architecture

	The Transport Layer
	The Data Presentation Layer
	The Binary Protocol approach
	The Text-Based Protocol approach

	Definition of a device
	Defining a Schema (the type of device)
	Inheritance of schemas
	Naming of Schemas

	Generic Schema
	Definition of a message
	Header
	Body
	Cases of error

	Security
	Need for security
	Proposals for security
	Preliminary tests

	Best Practices
	Composite Device
	Gateway
	Virtual Device
	Device Overloading another one
	Hidden Device

	Acknowledgments
	Draft of Schemas

