
A brief introduction to xAAL v0.7-draft

Christophe Lohr Jérôme Kerdreux

December 10, 2019

Abstract
This document summary information which specifies xAAL such as defined by the

IHSEV/HAAL team of IMT-Atlantique.

1 Introduction
The xAAL system is a solution for home automation interoperability. Simply speaking, it
allows a device from vendor A (e.g. a switch) to talk to a device from vendor B (e.g. a lamp).

The xAAL specification defines: (i) a functional distributed architecture; (ii) a means to
describe and to discover the interface and the expected behavior of participating nodes by the
means of so-called schemas; and (iii) a secure communications layer via an IP (multicast) bus.

These points are detailed in the specification document of xAAL version 0.5-r2.1, which is
considered as the latest stable release. xAAL version 0.6 is a first attempt to introduce CBOR,
but with some points to improve. xAAL version 0.7 aims to address them.

• xAAL architecture remain almost the same as in version 0.5-r2 except that Schema Repos-
itories are withdrawn.

• xAAL schemas are still written in JSON, except that now data types are specified with
the Concise Data Definition Language (CDDL, RFC 8610)2 and no more with the JSON
Schema3 dialect. Moreover, data type definitions are gathered in a data model section of
xAAL schema documents.

• xAAL version 0.7 proposes to use the Concise Binary Object Representation (CBOR,
RFC 7049)4 in place of JavaScript Object Notation (JSON, RFC 7159)5 for messages.

The philosophy. xAAL is a distributed system based on “the best effort” principle. Each
one does its best according to its capacity for things to go well. There is no warranty. There is
no quality requirement to expect/provide from/to others.

Following papers discuss main points of xAAL:

1. C. Lohr, P. Tanguy, J. Kerdreux, “xAAL: A Distributed Infrastructure for Heterogeneous
Ambient Devices”, Journal of Intelligent Systems. Volume 24, Issue 3, Pages 321–331,
ISSN (Online) 2191-026X, ISSN (Print) 0334-1860, DOI: 10.1515/jisys-2014-0144, March
2015.

1http://recherche.imt-atlantique.eu/xaal/documentation/
2https://tools.ietf.org/html/rfc8610
3http://json-schema.org/
4https://tools.ietf.org/html/rfc7049
5https://tools.ietf.org/html/rfc7159

1

http://recherche.imt-atlantique.eu/xaal/documentation/
https://tools.ietf.org/html/rfc8610
http://json-schema.org/
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7159

2. C. Lohr, P. Tanguy, J. Kerdreux, “Choosing security elements for the xAAL home au-
tomation system”, IEEE Proceedings of ATC 2016, pp.534 - 541, Jul 2016, Toulouse,
France.

2 The xAAL Architecture
A home automation facility is usually made of physical devices (sensors, actuators). The
basic way for users to interact with a home automation facility is by pressing buttons or
switches, that is to say activating dedicated physical sensor devices. Modern home automation
solutions provide user interfaces such as mobile applications for smartphones tablets PC or voice
interfaces. It is also common to provide some functionalities for scripting sequences of actions to
be triggered automatically at a given time or to react to some expected event. There may also
be some logging functionalities for monitoring parameters along the time, such as temperature
in rooms, consumption of energy or water, so that users may reduce their consumption.

The xAAL system aims to address the typical uses and needs towards home automation
systems.

Objectives:

• The system should be robust: the failure of a component should not prevent others from
doing their job.

• The system should be lightweight, even in terms of communication. It should use existing
communication networks available at home, without consuming too much bandwidth.

• The system should be flexible: adding or removing a component should not require long
or complex configuration processes to make it work nor disturb the other components.

• The system should address security considerations, regarding users’ privacy, or third
party’s threat to get control.

• Last, but not least, the system should handle interoperability issues, allowing a device
from vendor A (e.g. a switch) to talk to a device from vendor B (e.g. a lamp), allow-
ing consumers to buy devices they need without being enclosed into the market or the
technology of the vendor of devices they already have bought.

2.1 Overview of the xAAL Architecture

The xAAL system is made of functional entities communicating to each other via a messages
bus over IP. Each entity may have multiple instances or zero, may be shared between several
boxes, and may be physically located on any box.

Figure 1 shows the general functional architecture of the xAAL system in a typical home
automation facility.

Native Equipment. Some home automation devices (sensors, actuators) can communicate
natively using the xAAL protocol.

2

external

servers

web

...

Gateway Gateway

...−xAAL...−xAAL

Home Automation Devices

PC TV... tablets...

User

REST...
MQTT...

Web...

Interfaces

.

xAAL bus (Multicast IPv4/IPv6 UDP)

Cache of

xAAL events
scenarios

of

Automata

xAAL Native

Devices

Database of

Meta−data

for devices

home−automation
robots

etc.

Figure 1: Functional Architecture of xAAL.

Gateways. In general, devices for home automation only support their own proprietary com-
munication protocol. Therefore, elementary gateways have the responsibility to translate mes-
sages between the manufacturer protocols and the xAAL protocol.

Within an installation, each manufacturer protocol may be served by a dedicated gateway.
According to the technologies and the manufacturer protocols, each gateway will handle

the following issues: pairing between the gateway and physical devices, addresses of devices,
configuration, and the persistence of the configuration.

Gateways can be queried about the list of devices they manage.

Database of Metadatas. Each automation device within a facility is likely to be associated
with a piece of user-defined information: for instance some location information (e.g. declare
that the equipment typed as a lamp and having address X is located in the “kitchen” or in
the “bedroom of Bob”), possibly a friendly name to be displayed to the end user (e.g. device
having address X is called “lamp#1”), or any useful piece of information for users regarding
devices on its facility (e.g. pronunciation of the nickname of the device for a voice interface, or
whatever).

All this information is grouped in a database of metadata. This database contains somehow
the configuration of home automation devices, from the end-user point of view.

The database of metadata is present on the xAAL bus. Other xAAL devices can query it
via this bus to obtain information associated with the identifier of a device, or conversely a list
of devices associated with a given piece of information.

There should be at least one database of metadata on the bus. There could be several.
Such pieces of information are structured as key-value pairs. Keys and values are UTF8

strings. The xAAL specification does not define a normative list of pre-defined or well-known
key entries. As a consequence, the meaning of a key makes sense only for the entity that write
it in the database and for the entities which read it. This is the responsibility of those entities
to agree on a common semantics to interpret information.

3

Cache. Unidirectional sensors are quite common: one cannot question them, they send their
information sporadically. (e.g. A thermometer which sends the temperature only if it changes.)

So, there should be at least one cache on the xAAL bus that stores this information so
that other entities can query it whenever necessary. Note that even if such caching feature is
implemented by the gateway software itself, the cache is seen as a dedicated xAAL device.

Such a cache should store at least the values of attributes carried by notifications sent by
the devices. It can also stay informed by monitoring request/reply messages between devices
about values of attributes.

As with any caching mechanism, it is necessary to associate a timestamp to cached infor-
mation. When another entity on the xAAL bus asks the cache for information, it also gets the
age of the cached information, and decides itself if it is good enough or not. This is not the
responsibility of the cache to manage the relevance of data according to their age. This is the
responsibility of the client that makes the request. Moreover, the clock used by caches to set
such timestamps may not be accurate or synchronized well. This is the responsibility of clients
to deal with that.

Again, inconsistencies may arise if two caches return information that has the same times-
tamp but divergent values. This phenomenon is a priori very rare. However, the xAAL speci-
fication does not enforce any rule to solve inconsistencies.

Automata of Scenarios. Scenarios are advanced home automation services like, for example
start a whole sequence of actions from a click of the user, or at scheduled times, or monitor
sequences of events and then react, etc.

To do this, xAAL proposes to support it by one or more entities of the type automata of
scenarios.

These automata of scenarios are also the right place to implement virtual devices. For
example, consider a scenario to check for the presence of users in a room: it could aggregate
and correlate a variety of events from real devices, and then synthesizes information such as
“presence” and notify it on the bus, in order to be used by other entities. By proceeding in
this way, this scenario should appear by itself as a device on the bus, with its address and its
schema. This scenario is a kind of virtual device.

User Interfaces. One or many user interfaces are provided by specific entities connected to
the xAAL bus. This can be a real hardware device with a screen and buttons; or a microphone
which performs voice recognition; or a software component that generates Web pages (for
instance) to be used by a browser on a PC, a connected TV, or whatever; or software that
provides a REST API for mobile applications (tablets, smartphones), to an external server on
the cloud for advanced services, to an MQTT server, or to offer features for services composition,
etc.

Within a home automation system, there may be one or many user interfaces.

2.2 Typical Work Flow
Such a functional architecture allows managing the dynamic aspects of the infrastructure (mod-
ularity, scalability, adaptation, etc.). Thus, advanced functions such as HMI or automata of
scenarios can adapt themselves automatically to the infrastructure and to its modifications (if
equipment enters / leave, if one fails or is replaced, etc.).

The typical work flow of an HMI could be

1. Query the xAAL bus to be aware of the present devices;

2. Query devices about their description (model, manufacturer, URL, etc.);

4

3. Optionally, download non-standard schemas from the URL of the description of those
non-standard devices, or else use standard schemas;

4. Query the database of metadata about devices to get the configuration of the installation
(a friendly name to display, location and other key values associated with each device);

5. Query the cache for the latest known states of devices;

6. Dynamically build display screens and control interfaces for these devices.

2.3 Change in the xAAL Architecture
Compares to former versions, xAAL 0.7 has no more Schemas Repository. This xAAL device
was used to provide xAAL schemas via the xAAL bus. Schemas are still there with xAAL
0.7 but are distributed by other means. Experiments on the long term have convinced us that
there is not a real use of such a functionality (having schemas via the home automation bus
itself instead of downloading from the Web).

Indeed, xAAL schemas are not of such a dynamic nature. They are downloaded and con-
figured once. Standards schemas can be preconfigured, and non-standard schemas can be
downloaded from the URL provided by non-standard devices in their description.

The last reason for this change is that, finally, schema files are not so used as-it by xAAL
devices. Schemas are really important for developers to know formally what a device does.
This is important for developers of the device described in the schema, and also for developers
of other devices which interact with it. Schemas may also be used to generate code skeletons.
As a consequence, the knowledge provided by schemas takes the form of software code within
devices. One of the few cases where schema files are used as-is, this is by the generic user
interface which is able to dynamically and automatically build interfaces on the basis of the
xAAL schema files. To be honest, even if this generic user interface is completely functional,
it is not so elegant neither ergonomic. It is probably not likely be used in real facilities, only
for developers. To do the job, this generic user interface is able to download schemas files from
the Web, it does not really need to get it from the xAAL bus.

Those discussions have led us to simplify the xAAL architecture and to withdraw the Schema
Repository.

2.4 Communication Channel
The xAAL architecture is based on the many-to-many communication principles, concretely a
communication bus. Any component can post messages (e.g. sensor data) to another, several,
or all components without preliminary connection setup. This has many advantages over usual
client-server communication principle. Point-to-point communications are avoided, which saves
device memory resources. Indeed, a home automation component is usually linked to many
others for things to work. Maintaining many permanent connections in parallel may be ex-
tremely heavy for constrained devices. A bus also brings some functional benefits. This allows
the discovery: when a new component appears in the installation, it announces itself. All other
entities can then take it into account. Similarly, when a new component enters, it can query the
bus to discover the other components already present. This greatly facilitates the configuration,
allows dynamicity as well as the evolution capacities of the system.

For these reasons, the xAAL system has been designed on an IP multicast bus (IPv4 or
IPv6).

5

2.4.1 WiFi and Multicast

WiFi weaknesses are out of the scope of the home automation study. However, this may have
an impact on the xAAL architecture. This is why a discussion is welcome.

WiFi (IEEE 802.11) is a common use wireless technology for IP networks, also at home.
It is widely used to provide Internet access to mobile devices (smartphones, tablets, laptops,
etc.). It is also used for non-mobile devices (connected TV, video game consoles, IP CCTV
cameras, etc.) when users are refractory to the installation of Ethernet cables.

Unfortunately, IEEE 802.11 protocols do suffer from design choices regarding the manage-
ment of broadcast and multicast packets. Simply speaking, it has been chosen not to acknowl-
edge broadcast and multicast packets at the radio level, contrary to unicast packets. Indeed,
avoiding managing a list of nodes having not acknowledged packets greatly simplify the proto-
col implementation. Broadcast and multicast packets are sent only once, and at a lower rate
to get a better chance to be received without error.

This point has been studied by research in wireless networks since the very first years of
WiFi. Several proposals have been made, by modifying the radio MAC layer, by introducing
a central coordinator, by replacing multicast by unicast either at the MAC layer or at the
application layer, etc. 6 7 8 9 10

Over the years, the WiFi Alliance has enhanced WiFi protocols, but with the objective to
increase bandwidth, and for unicast. One may notice that the IEEE 802.11e standard proposes
the Wireless Multimedia Extensions (WME). It provides basic Quality of service (QoS) features
on which the first two classes of service among the four ones are dedicated to voice and video
content. Classification is often performed on the basis of the TOS field of the IP header. WME
is sometimes presented as a solution for multicast-over-WiFi issues, despite the mechanisms
act at different layers and has concretely no impact. The confusion comes from the idea that
multicast is dedicated to multimedia (e.g. TV diffusion over IP, which is actually one of the
multicast uses cases among others), and enhancing multimedia do enhance multicast. This is
not the case.

For twenty years, the Mboned IETF working group aims to facilitate deployment of multicast
technologies for the Internet at large. This working group also consider the issues of deploying
multicast on WiFi networks.11 Several nowadays mitigation solutions are listed. None is perfect.
The conclusion of this study is that “IEEE 802.1, 802.11, and 802.15 should be encouraged to
revisit L2 multicast issues.”

Indeed, this situation contributes to the “Ossification of the Internet”: due to (technical
and administrative) limitation of several infrastructure equipment, innovations tend to restrict
themselves to a small subset of Internet services. To get a chance to get clients, one only
uses TCP and Web communication technologies to implement innovations. On the other hand,
equipment manufacturers take time to enhance their product to fully support Internet principles
with the argument there is a few consumer request.

Note that the situation is probably similar when diffusing multicast packets over HomePlug-
AV PowerLine Adapters. 1213

6https://drakkar.imag.fr/IMG/pdf/perfAnomaly-infocom.pdf
7https://pdfs.semanticscholar.org/b348/624662cedc637b50eea6e28206d7e16dc71a.pdf
8https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dircast.pdf
9https://hal.inria.fr/inria-00084130v2/document

10https://link.springer.com/article/10.1023%2FA%3A1016631911947
11https://tools.ietf.org/id/draft-ietf-mboned-ieee802-mcast-problems-09.html
12http://www.plc.uma.es/articulos/Analysis_and_improvement_of_multicast_communications_in_

HomePlug%20AVbased_in_home_networks_2014.pdf
13http://repositorio.upct.es/bitstream/handle/10317/4179/pjpe.pdf

6

https://drakkar.imag.fr/IMG/pdf/perfAnomaly-infocom.pdf
https://pdfs.semanticscholar.org/b348/624662cedc637b50eea6e28206d7e16dc71a.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dircast.pdf
https://hal.inria.fr/inria-00084130v2/document
https://link.springer.com/article/10.1023%2FA%3A1016631911947
https://tools.ietf.org/id/draft-ietf-mboned-ieee802-mcast-problems-09.html
http://www.plc.uma.es/articulos/Analysis_and_improvement_of_multicast_communications_in_HomePlug%20AVbased_in_home_networks_2014.pdf
http://www.plc.uma.es/articulos/Analysis_and_improvement_of_multicast_communications_in_HomePlug%20AVbased_in_home_networks_2014.pdf
http://repositorio.upct.es/bitstream/handle/10317/4179/pjpe.pdf

Is this severe? Well, this greatly depends on the quality of the WiFi Access Point in use.
Let’s consider a managed mode 802.11 network: several WiFi Stations (STA) connected to a
WiFi Access Point (AP). If multicast packets are transmitted from an STA to the AP, packets
are well received almost as good as unicast packets. However, if packets are transmitted from
the AP to STAs, there are risks packets are lost, depending on the quality of the AP and the
global situation. According to our informal and humble tests in lab with a small set of different
AP, nowadays AP are not perfect but of a rather good quality. Moreover, probably thanks to
the small size and their sporadic emission, xAAL messages are not really affected. However,
there is no formal warranty at all.

Workaround: a multicast-unicast reflector. If network equipment of a home facility has
severe issues regarding multicast, the xAAL infrastructure can be slightly modified. In such a
situation, one may use a Unicast-Multicast Reflector. This application forwards messages from
a multicast channel (e.g. the xAAL bus) towards connected UDP unicast clients, and vice
versa.

This is the same approach as solutions developed in the middle of 90s for the MBone project
14 except that our reflector does not intent to manage RTP RTSP RTCP protocols. It works
at the UDP layer.

To use it: first, put as many as possible xAAL devices on the wired side of your AP. On
plain old Ethernet wires, multicast works well. Put also the reflector on the wired side. All
those components can communicate with each other via the xAAL multicast bus, as usual.
Then, xAAL devices that have to go on the wireless side of your AP should be configured to
use the unicast IP of the reflector instead of the multicast IP of the xAAL bus (the xAAL
network stacks accept a unicast peer). This increase delays and bandwidth consumption, but
this works.

Note that such a reflector is not a xAAL component. One recommends not to use it, if
possible. As an alternative, select a better quality WiFi AP, or use Ethernet.

3 The xAAL Devices Behavior and xAAL Schemas
xAAL devices are described by so-called schemas. Schemas are documents specifying attributes,
notifications and methods API.

Note that the idea of specifying home automation devices by schemas is inspired by the
UPnP approach.15. Thanks to that, UPnP entities could discover new entering devices, ways
to interact with them, and possibly dynamically build user interfaces (well, for this latter point
UPnP schemas usually pointed to some Microsoft DLL installers or Internet Explorer plugins
to be installed on the user’s PC, which is not very secure).

The other advantage of a formal specification of home automation devices is for software
production. Having a clear API specification may help to automatically build skeleton of code.
That was the case with the XDR (External Data Representation) for Sun’s RPC (Remote Pro-
cedure Call) since the middle of 90s. Now there is a renewal with OpenAPI and other RESTful
API description languages: during the first age of Web technologies, communications were
rarely clearly specified since developers were used to manage both sides (the server code, plus
the client in the shape of JavaScript code). Nowadays, with REST architecture principles, the
web client is not necessarily the end-user web browser but sometimes a third-party application.
Within the Web community, this revives needs towards clear API specifications.

The home automation community does have the same needs.
14https://www.researchgate.net/publication/2855653_Multicast-Unicast_Reflector
15http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf, Chapter 2.

7

https://www.researchgate.net/publication/2855653_Multicast-Unicast_Reflector
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf

Objectives:

• xAAL devices should be specified in a clear way for others to know how to interact with
them, what to provide, what to expect.

• Those specifications should describe devices in a generic and in an abstract way (e.g. all
thermometers should have the same behavior, even if a manufacturer adds blinking nice
LEDs on it or whatever)

• Those specifications should allow extensions to describe devices more sophisticated than
the basic ones of the same family, without breaking the basic behavior one may expect
for devices in this family, in a backward compatibility way.

• Those specifications should follow a strict syntax to be parsed by software for automatic
treatments. (e.g. Building skeleton of software, or automatic discovering of peers API).

• The specification document should be readable by a human (well, with some software
programming skills).

3.1 Definition of a device
A device has a dev_type and an address.

dev_type: This references the schema and defines the type of the device. It is hard-coded
into the device.

• This schema identifier is a string consisting of a pair of words separated by a dot:
dev_type:class.variant

The first word refers to a class of device type (e.g. lamp, switch, thermometer, power
plug).

The second word refers to a variant of a given class (e.g. within the lighting class
one may have an on-off lamp, a lamp with dimmer, an RGB lamp, etc.). The second
word may also refer to a schema extension by a manufacturer (cf. 3.3).

• The keyword “any” is reserved and acts as a wildcard for requests. So that the identifier
“any.any” is reserved and refers to all variants of all classes within request messages.
This is a virtual type. It is not allowed to defines a schema named “any.any”. No one
can claim to be of the type “any.any”. Devices having no dedicated attribute, method
or notification may use the concrete type “basic.basic”.

• For example, the pair “lamp.any” means all variants of the class “lamp”. This is also an
abstract type. Remember that the concrete type “lamp.basic” is provided to describe
basic features common to all lamps.

• We reserve a special name: “experimental”, for the class, as well as for variants. This
designates concrete types. Associated schema, if written, should not be distributed out-
side the testing platform. (e.g. When someone makes a device but has not got a standard
name for its type.)

8

Address: The device ID, unique on the bus.

• This device identifier is a UUID (RFC 4122), a 128-bit random number.

• Addresses are self-assigned. There is no naming service anywhere. A device does not
request any entity to get an address.
Concretely, addresses may be assigned:

Either this is hard-coded in the factory.
Auto-generated (random) at the time of installation. However, it is recommended
that this address remain persistent. (i.e. Please save it, if possible, during power
breaks.)
There is in principle very high probability of having no collision of UUIDs. However,
it is technically possible to verify that a UUID is not already used on the bus by
a kind of “Gratuitous ARP”, i.e. by is_alive requests to ensure that no one else
already uses this address.
But certainly not assigned by a bus supervisor/coordinator or something like that.

3.2 Definition of a schema, the type of device
Each device is typed, i.e. described by a schema.

A xAAL schema is a JSON object with a specific form that must validate given CDDL rules
(Concise Data Definition Language, RFC 8610). See Appendix A.

The schema provides a bit of semantics for a device and describes its capabilities: a list of
attributes that describe the operation of the device in real time (the device announces change
of values on the bus), a list of possible methods on this device (mechanism of request replies),
a list of notifications that it emits spontaneously.

• A list of attributes. If the value changes, this spontaneously generates a notification to
the bus.
Each attribute is defined by:
– A unique name which identifies it within the schema;
– A type name relating to the data model section.

• A list of methods. Each method is described by:
– A unique name which identifies it within the schema;
– A textual description;
– A list of “in” arguments to be filled by peers when invoking this method;
– A list of “out” arguments returned by the device to peers;

Each argument is defined by:
A unique name which identifies it within this method definition in the schema;
A type name relating to the data model section.

– A list of related attributes that may be affected by the method (e.g. to be refreshed
in an HMI after the method call)

• A list of notifications. Each notification is described by:
– A unique name which identifies it within the schema;
– A textual description;
– A list of “out” arguments included in the notification; Each argument is defined by:

A unique name which identifies it within this notification definition in the
schema;

9

A type name relating to the data model section.

• A data model section, that is to say a list of data types definitions. For each type name:
– A textual description;
– The unit, if any. This unit should be one of the IANA Sensor Measurement Lists

(SenML) registry.16 17 If none is relevant, use a unit of the International Bureau of
Weights and Measures. A standard unit allows automatic processing, data compu-
tation, or at least a consistent way for rendering by HMIs;

– A type definition in the form of CDDL rules, for extra processing (to dynamically
build software skeleton, a generic HMI, etc.).

3.3 Inheritance of schemas
There is a notion of inheritance between schemas. A schema can extend an existing schema.
xAAL defines the first three levels of this genealogy:

1. A basic generic schema, named basic.basic, common to all existing devices in the world,
that everyone has to implement. (See 4.)

2. A basic schema for every class (e.g. lamp.basic, thermometer.basic, switch.basic, etc.).
Such basic schemas inherit from the generic schema, and extend it by defining basic func-
tionalities shared by all device variants of the corresponding class. (e.g. lamps basically
can do on/off)

3. Advanced schemas for more complex devices, by extending the basic schema of the cor-
responding class, and by defining new functionalities. (e.g. lamps basically do on/off,
but some more sophisticated lamps are dimmable, others offer RGB control, etc.). All
variants of a class must inherit the basic schema of the class. E.g. lamp.dimmer extends
lamp.basic which extends basic.basic

4. Thereafter, manufacturers of home automation equipment will naturally define their own
schemas among their products range. However, manufacturers must not define their own
schemas as level 1 schemas (the generic schema is the only one), nor as level 2 schemas
(basic class schemas). Schemas from manufacturers are necessarily extensions of schemas
from level 2 or higher.
While naming such schemas, manufacturers may use the second word (the variant name)
of the pointed pair as their own discretion. This is their responsibility to choose a name
that may not conflict with existing ones. However, the schema name should refer above
all of the functionality of the device and means to interact with it; the name should also
give an idea of the nature of the device.

Definition of the extension process: Let’s consider a first schema which is extended by a
second schema. The later express differences with the former. The extension process produces
a new schema. Extending a schema has the following meaning:

• The latter schema may introduce new attributes, methods, notifications, and associated
data types. The result of the extend operator is a new schema that contains all attributes,
methods, notifications, data types of former schema, plus the new ones introduced by the
latter schema.

16https://www.iana.org/assignments/senml/senml.xhtml
17Note that, contrary to SenML, within the xAAL context, the percent symbol “%” is used for values between

0 and 100, and not for values between 0 and 1.

10

https://www.iana.org/assignments/senml/senml.xhtml

• The latter schema may overload the definition of some existing objects, that is to say
attributes, methods, notifications, and data types. An overloading means that such an
object has the same name but a different definition. There is no attempt to merge the old
and the new object definition. The resulting schema contains all new objects (attributes,
methods, notifications, data types) plus old ones that have not been overloaded.

4 The Basic Schema
This is the basement of every schema. This is normative. All other schemas must inherit from
it somehow. It is named basic.basic.

Attributes
• Attributes involved in the protocol

dev_type: string, the name of the schema to which the device obeys;
address: byte string of 16 bytes, a UUID (the address of the device);

• Attributes describing the device

vendor_id: string, the name or identifier of the vendor;
product_id: string, an identifier of the product assigned by the vendor;
version: string, version or revision of the product assigned by the vendor;
hw_id: any type, some hardware identifier of the device (e.g. low-level addresses of
the underlying protocol, a pairing code, a serial number, or any piece of information
that may help to retrieve a device within a facility for maintenance);
group_id: bytestring[16], a UUID shared by all devices belonging to the same phys-
ical equipment (e.g. each plug of a multi-plug outlet, each thermometer and hy-
drometer of a weather station, etc.);
url: string, the URL of a website with extra information
schema: string, the URL to download the schema file in case if the device is of a
non-standard dev_type;
info: string, any additional information, if any, about this device that should make
sense for the end user; (e.g. on the thermometer of a weather station this may
indicate that this is the indoor thermometer or the outdoor thermometer, or on a
plug belonging to multi-plug outlets this may indicate the position of the plug.)
unsupported_attributes: array of strings (hopefully empty), with names of at-
tributes of the schema that are actually not supported by the device for some (bad)
reason.
unsupported_methods: array of strings (hopefully empty), with names of methods
of the schema that are actually not supported by the device for some (bad) reason.
unsupported_notifications: array of strings (hopefully empty), with names of
notifications of the schema that are actually not supported by the device for some
(bad) reason.

The attributes of the basic.basic schema are mostly considered as internal, or dedicated
to the description of the device, and are not likely to change along the life of the device.
Unlike attributes of extending schemas, they must not be involved in the attributes_change
notification nor in the get_attributes method described below, but via the get_description
method.

11

Notifications

• alive: emitted when starting the device and then periodically emitted at a rate left to
the discretion of the device. The notification message may contain a timeout parameter
indicating to others when the next alive should arise.

• attributes_change: emitted at every change of one of the attributes (except those
belonging to basic.basic). The body of the message contains only attributes which
changed.
A schema gives the list of all possible attributes that may appear within this notification
message. So, in a given message, some of those attributes may be present, some other
may not be. This is normal.
However, the generic schema defines this method with no attributes, since the default at-
tributes defined above are relating to the description of the device, and do not characterize
the real-time operation of a specific feature. Schemas extending basic.basic may over-
load the attributes_change notification according to the extra attributes introduced by
the extending schema.

• error: issued when the device detects a major error or a failure.
The notification may contain a description (a textual description of the error), and a
code (the numeric code of error).
Remember that xAAL is of the best-effort philosophy. Therefore, a wrong method invo-
cation does not issue error notifications. (The called device does its best with what it
received, and possibly change its attributes accordingly, but there is no one-to-one dia-
logue to explain mistakes to the caller.) Errors are issued only on major failure of the
device.
This is intended to be overridden in the definitions of extending schemas.

Note: notification messages should be addressed to all.

Methods

• is_alive

dev_types (in): array of dev_type strings, giving names of the schema of devices
that should wake up.
One may have:

an empty array or ["any.any"] to wake up everybody, or
an abstract type, e.g.,["lamp.any"] to wake up all lamps, or
a specific type, e.g. ["lamp.basic", "lamp.dimmer"] to wake up just those
types of lamp, or
an array of above-mentioned items, e.g. ["lamp.dimmer", "shutter.basic"]
if we are interested in that, etc.

The target field of a is_alive request is often empty, i.e. broadcasted, but not
necessary.
A is_alive request must not cause any response message. Instead, recipients(s) of
the request must respond as much as possible by an alive notification (addressed
to all).
This method must not be overloaded by extending schemas.

12

• get_description

vendor_id, product_id, version, hw_id, group_id, url, info, unsupported_attributes,
unsupported_methods, unsupported_notifications (out): see the meaning of the
above list of attributes.
This method should not be overloaded with extending schemas. In case if this
method is overloaded, the above-listed arguments must remain.

• get_attributes

attributes (in): array of string, the name of wanted attributes. If the array is
empty or if this parameter is absent within the request, all attributes should be
returned.
<key values of attributes> (out): Attributes actually returned. The schema
basic.basic defines this method with no attributes. However, this method may be
overridden in the definition of extending schemas.
It is not mandatory to return all requested attributes. Peers should not make any
assumption on this.
Reminder: devices do not return the attributes defined by the basic.basic schema,
only attributes introduced by extending schemas.

4.1 Composite devices
This section discusses the case of equipment that is composed of a set of several elementary
devices. Those cases arise in different circumstances for which the xAAL solutions differ. Here
are some best-practice guidelines.

4.1.1 Gateways

A gateway is a piece of software and hardware which make the bridge between the xAAL bus
and a proprietary home automation protocol used by some devices deployed in a facility (e.g.
X10, Zigbee, X2D, Z-Wave, HomeEasy, KeeLoq, etc.).

The gateway presents one xAAL device on the xAAL bus for each proprietary home au-
tomation device it manages; each one with its own xAAL address and its own dev_type. They
are called embedded devices.

Moreover, the gateway should present itself as an additional xAAL device, with its own
address and a dev_type:"gateway.basic", or any relevant extended type of gateway. The
gateway maintains the list of its embedded devices and can be questioned about it. Some
advanced gateways may also provide information about the status of managed devices (e.g. if
the gateway know that certain devices are defective or dead).

Even if it is not recommended, a gateway can also choose to be not visible on the xAAL
bus, does not announce itself, nor indicates that it has embedded devices.

4.1.2 Group of devices

A physical equipment may consist of several devices. For instance, consider the case of a
“smart control multi-plug socket”, or a small weather station with several sensors that measures
indoor/outdoor temperature, humidity, etc.

In such a case, the equipment is seen as a set of different xAAL devices, each one with its
own functionalities, attributes, etc. From a logical point of view (the xAAL point of view),
this equipment is divided into several xAAl devices. However, those devices that belong to the

13

same physical equipment are grouped. Within their description they have the same group_id
value (a UUID in fact). They are called grouped devices.

A group just says that some xAAL devices are physically together, and only this. (Which is,
however, a highly valuable information for maintenance.) This does bring no indication about
the fact that some of those xAAL devices could be in relationship from a logical or functional
point of view or to provide some service. (This is handled within the definition of the schema
of the devices, if needed.)

4.1.3 Devices Using Others

A device may provide services on top of other devices. For instance, consider the case of the
“smart control multi-plug socket”. Each of the plug may be smart because it provides two
services. First of all, this is a basic plug with a remote-controlled on/off. This service is
implemented by the xAAL device powerrelay.basic. Moreover, those smart plug may embed
power consumption monitoring services. Such a service is implemented by the xAAL device
powermeter.basic.

By design, the xAAL device powermeter.basic provides its service on top of other devices.
It measures the power of something: possibly only one plug in the case of the previously
mentioned “smart plug”, or possibly a large set of several devices, a part of the power supplying
network of the facility (e.g. all equipment of the kitchen, or of a given floor, etc.). The definition
of the powermeter.basic device includes an attribute to list measured devices (called power in
the current version of the schema definition). This has no relation to the group_id introduced
in the previous section.

There is the same consideration with the xAAL device weatherforcast.basic. Its schema
definition includes an attribute listing other devices actually used to compute its forecasts
(thermometers, hydrometers, etc.). This has no relation to the group_id usage, which only
means that those thermometers, hygrometers and forecast algorithms may belong (or not) to
the same physical box (the weather station).

4.2 Changes in xAAL Schemas
Schemas are written in JSON for now. This is still the case with xAAL version 0.7. The new
version proposes to replace JSON by CBOR for messages, not for schemas. There are several
reasons for this:

• First, JSON cover the need. As indicated, a schema tells the list of attributes, notifications
and methods of the device, plus some extra information to describe the device (vendor,
model, etc.). The expressiveness of JSON is enough for this.

• Then, a schema should be a document readable by a human (and possibly editable), since
this brings some semantics that should make sense to users and developers. A binary
document, such as CBOR, is only understandable by software. This is not desirable in
the context of xAAL schemas.

Unfortunately, mixing JSON and CBOR may lead to uncomfortable situations that are
investigated bellow.

4.2.1 Specifying types of attributes and parameters

Schemas specify the types of the attributes and parameters of devices.

14

To do this, for each attribute or parameter description, the former format of xAAL schemas
included fragments of Json-Schema. 18 19. A Json-Schema is a kind of grammar that specifies
the form that a JSON data must fit. Compares to alternatives (e.g. Json Content Rules
(JCR)20, JSON Constrained Notation (JSCN)21, etc.), Json-Schema uses a pure JSON syntax.
A Json-Schema specification is written in JSON. Thanks to this, the type of xAAL attributes
and parameters (in Json-Schema) could be directly included in the xAAL schema.

The key point is that this describes a data presentation for data presented in JSON. But
xAAL version 0.7 introduces messages in CBOR. Values of attributes and parameters are carried
by xAAL messages, therefore encoded in CBOR. Json-Schema is inappropriate for describing
a CBOR data model. The dedicate data-model language for CBOR is CDDL (Concise Data
Definition Language, RFC 8610).

As a consequence, xAAL schema version 0.7 now describes the types of the attributes and
parameters of devices by the means of CDDL rules.

4.2.2 Gathering Types Definitions in a Data Model Section

With the former versions of xAAL schemas, types of data used by attributes methods and
notifications were specified ‘in-line’. That is to say, the schema describes the first attribute by
giving its name followed its type definition, then do the same for the next attribute. Then it
describes a first method by giving its name and its list of parameters; and for each of these
parameters it gives its name and its type definition.

As a consequence a schema may include several copy paste of data type definition. Typically,
attributes definitions were duplicated into the standard get_attributes() method and into
the attributes_change() notification. Those copy pastes made the schemas hard to read for
a human.

Therefore, now xAAL schemas give a type name to each attribute and parameter, and
gather type definition into a dedicated section called data model. This data model section is
subject to extension mechanisms as for attributes, methods, and notifications.

4.2.3 On the Use of CBOR Tags

In CBOR, a data item can be enclosed by a tag to give it additional semantics. Such a tag gives
an indication of how data should be interpreted. For instance, tag 0 says that a text string has
to be interpreted as a date, tag 1 is for dates since POSIX Epoch (1970-01-01), tag 32 says that
a text string is an URI, tag 37 says that a binary string is a UUID, etc. A small set of tags is
part of the standard (RFC 7049); additional tags are defined by a dedicated IANA registry22.

There are pro and cons on using CBOR tags. Tags values are carried with data, this con-
sumes space. On the other hand, receiver gets in-line semantic indication to interpret data with-
out having to check any side specification documents. This is particularly useful when CBOR is
used for general (de)serialization in a programming environment: many CBOR libraries widely
use tags to provide automatic casting of data into dedicated specific programming object types.
Conversely, tags are somehow redundant with information provided within xAAL schemas.

Well, on the basis of these considerations, it has been settled that tags were not used for
low-layers of the xAAL communication protocol (that is to say the Security Layer and the
Application Layer as defined below). Indeed, these layers are of a small and rigid shape,

18http://json-schema.org/latest/json-schema-core.html
19http://json-schema.org/latest/json-schema-validation.html
20https://tools.ietf.org/html/draft-newton-json-content-rules-08
21https://tools.ietf.org/html/draft-miller-json-constrained-notation-00
22https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

15

http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html
https://tools.ietf.org/html/draft-newton-json-content-rules-08
https://tools.ietf.org/html/draft-miller-json-constrained-notation-00
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

without any room for choice or interpretation of data. These data items are relating to the
xAAL communication protocol itself.

However, data items relating to attributes, methods and notifications of xAAL devices are
of more complex shapes. Therefore, xAAL schemas may use CBOR tags in their data type
definitions; for instance, UUID, date, URI. Note that, if tags are specified in a xAAL schema,
then they are mandatory into the body part of the Application Layer for corresponding actions.
Tags management may lead to optional behaviors by decoders, but they are not optional in
data items written in messages once they have been specified by a CDDL rule (as in xAAL
schemas).

4.2.4 Guidelines for Writing Schemas

Writing Convention. Former versions of xAAL used the Calmel Case23 writing convention
for naming the elements of xAAL schemas. This choice was consistent with habits of JSON
(and JavaScript) communities.

The new version of xAAL move from JSON to CBOR, leaving JSON communities. Main
developers are closer to Python and C communities. One therefore decided to move to the
snake_case24 writing convention.

Action Verbs for Methods. A key to get an engaging API is to select a wording for elements
which carry an intuitive and well-known meaning. This makes the talent of the designer. There
is no universal rule. However, this sounds reasonable selecting action verbs to name methods,
e.g. turn_on() and not just on().

Similarly, programmers usually like accessors to attributes, i.e. set_XXX() get_XXX().
(Note that the latter may be redundant with the generic get_attributes() method of the
basic.basic schema.)

Describes Functionalities from the Other Point of view. Amazon Alexa25 and Google
Home26 propose means to design its own device by composing elementary so-called capabilities
(Alexa) or traits (Google Home). E.g. for a color-changing lamp this means power on-off
brightness HSV color etc.

Such APIs are oriented towards the description of products. For instance, an innovative
startup may sell an all-in-one connected fan with an oscillating feature, a colored dimmable
lamp, a camera and a thermometer. The API of such a device can be written by composing
corresponding capabilities or traits. This is the responsibility of the client application to seek
devices and to turn on the lamp of this fan if the user wants light.

Moreover, this may require sub-addressing. For instance, a weather station may provide
both temperature and humidity measures, and be exposed with corresponding capabilities.
However, if this weather station has two thermometers, the temperature capability has to be
instantiated twice, with a sub-addressing to retrieve each of the two thermometers into the
device. From the client application point of view, these two thermometers are not retrieved
like other thermometers of the house.

As contrary, xAAL proposes schemas oriented towards the description of functionalities
from the client point of view. Concretely, a mult-features product such as a weather station is
split into several devices (thermometers, hygrometers, etc.). Each feature is implemented by a
dedicated xAAL device. Such xAAL devices may then be grouped thanks to a group identifier.

23https://en.wikipedia.org/wiki/Camel_case
24https://en.wikipedia.org/wiki/Snake_case
25https://developer.amazon.com/fr/docs/smarthome/get-started-with-device-templates.html
26https://developers.google.com/assistant/smarthome/guides/

16

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
https://developer.amazon.com/fr/docs/smarthome/get-started-with-device-templates.html
https://developers.google.com/assistant/smarthome/guides/

Client application may retrieve all thermometers in the same way whatever they are single
thermometer or embedded into an all-in-one product.

5 The xAAL Communication Protocol
xAAL is a distributed system. Participating entities need to communicate with each other.
The xAAL communicating protocol has been designed with following objectives in mind.

Objectives:

• The communicating channel should allow automatic discovering, allowing a new entity to
join the group without much job to do, and allowing other entities to know that a new
entity arrives.

• The communication stack should be simple and lightweight to implement in constrained
devices, in a stateless manner, without having to maintain alive several communication
channels in parallel.

• The communication should be lightweight in terms of messages size and number, close to
the background noise of a usual home network.

• The communication should address security considerations, regarding users’ privacy, or
threat to get control.

• The communication should be simple to configure for the end user.

xAAL messages are carried by UDP multicast packets. xAAL messages are made of two
layers: (i) a Security Layer with some clear fields mandatory for transport to receivers, followed
by a ciphered payload; and (ii) an Application Layer which consists of the decrypted payload
and containing all information for participating applications.

5.1 The Security Layer
The data of the Security Layer is the payload of the UDP multicast messages of the xAAL bus.
This is a CBOR array of 5 fields:

• [0]:version - Unsigned int, of the value 7. The version of the protocol. Other values should
be rejected, the message is ignored.

• [1]:seconds - Unsigned int. First half of the timestamp. The number of seconds since the
Epoch (1970-01-01 00:00:00 +0000 UTC).

• [2]:microseconds - Unsigned int. Second half of the timestamp. The number of microsec-
onds since the beginning of above second.

• [3]:targets - A definite byte string build as the CBOR serialization of the array of destina-
tion addresses for the message. Note that xAAL device addresses are UUID (see Sec.3),
here encoded as definite bytestring[16] without tags. A xAAL device receiving a message
should accept it if its own xAAL address is present in the array of targets. An empty
target array means a broadcast message. A target field containing an empty byte string
is not allowed (the message should be ignored).

17

security_layer = [
version : 7,
timestamp_sec: uint,
timestamp_usec: uint,
targets : bytes .cbor ([* (bstr .size 16)]),
payload : bstr

]

Figure 2: CDDL specification of the xAAL Security Layer

• [4]:payload - A definite byte string which is the ciphered Application Layer according to
version 0.5-r2 principles (Poly1305/Chacha20, a symmetric key, a binary nonce build on
the timestamp of messages, an acceptance window for the timestamp of messages, the
target field covered by the cryptographic signature).

If a message includes other fields in addition to the above mandatory ones, the message
may be accepted, but the extra fields must be ignored.

The above-described CBOR items must have no CBOR tags.
Figure 2 gives the CDDL specification of the xAAL Security Layer.

5.2 The Application Layer
The Application Layer is a CBOR array of size 4 or 5, depending if there is a body field or not:

• [0]:source - A definite bytestring[16]; the xAAL address (UUID) of the sender of the
message.

• [1]:dev_type - A definite string; the schema name of the sender (The pair classe.variant.)

• [2]:msg_type - An usigned int of value: 0:notify, 1:request, 2:reply. Other values must be
rejected, the message is ignored.

• [3]:action - A definite string; the name of the action brought by the message from the list
of methods and notifications described in the considered schema. The considered schema
is the one of the sender.

• [5]:body - An optional field. If present, it must be a map. Keys of this map are definite
strings, the names of parameters associated with the corresponding action according to
the schema and their value. Depending on data model specified in the schema, values
may have CBOR tags. Note that the body may be absent if the schema does not specify
parameters for the corresponding action. Multiple identical keys are not allowed, the
message should be ignored.

The above-described CBOR items must have no CBOR tags. However, value items within
the body may be tagged, according to the corresponding schema.

Figure 3 gives the CDDL specification of the xAAL Application Layer.

5.3 The Ciphering Method
The security of the xAAL bus is ensured by:

• A symmetric key, pre-shared into all participating devices;

18

application_layer = [
source : bstr .size 16,
dev_type : tstr .regexp "[a-zA-Z][a-zA-Z0-9_-]*\\.[a-zA-Z][a-zA-Z0-9_-]*",
msg_type : 0..2,
action : tstr
? body : { * (tstr => any) }

]

Figure 3: CDDL specification of the xAAL Application Layer

• Poly1305/Chacha20 as the only cryptographic algorithm, and used according to RFC
7905 recommendations (i.e. with a 96 bits nonce and a 256 bits key);

• A binary nonce build as a timestamp since the Epoch (seconds (64 bits) + microseconds
(32 bits));

• An acceptance window for the timestamp of messages;

• The list of targets in clear, but covered by the signature;

• A Security Layer in CBOR, as described above;

• An Application Layer in CBOR, as described above;

• The Application Layer is CBOR serialized to produce binary data, ciphered into a binary
buffer which is placed into the Security Layer as a CBOR definite byte string.

Notes:

• The target field of the Security Layer is a CBOR definite byte string. This is not an array
of UUIDs, this is the CBOR serialization of an array of UUIDs. This byte string may be
seen as a buffer of bytes and can directly be used as the public additional data for the
Poly1305/Chacha20 algorithm, to be covered by the cryptographic signature.

• The binary nonce (96 bits) to be used with Poly1305/Chacha20 is composed of the seconds
and microseconds (in this order): first a 64 bits big-endian unsigned integer (seconds),
followed by a 32 bits big-endian unsigned integer (microseconds).

Recommendations:

• To build the cryptographic key from a passphrase:
The Poly1305/Chacha20 algorithm uses a binary key on 256 bits. A fine way to select a
good key is to build it from a passphrase using a cryptographic hashing algorithm.
It is proposed to use the dedicated function provided for this purpose in the reference
Chacha20 library (the sodium library), and derived libraries:

– function: crypto_pwhash_scryptsalsa208sha256()
– for the salt: a buffer of zeros
– for the opslimit: crypto_pwhash_scryptsalsa208sha256_OPSLIMIT_INTERACTIVE

(512k cycles)
– for thememlimit: crypto_pwhash_scryptsalsa208sha256_MEMLIMIT_INTERACTIVE

(16 Mbytes)

19

• To choose a window of acceptance for the timestamp:
An acceptance window of two minutes should be fine.

• To have several keys on the same bus:
If several key or xAAL versions are needed in a facility, it is recommended to use different
xAAL buses (UDP ports).

Example. Figure 4 gives an example of a xAAL message (the Security Layer): a message to
the target 8BCC7ED2-A6AC-4D83-A723-6ED3B168C51F, with a ciphered payload.

Figure 5 shows the decoded payload (the Application Layer): the sender is the device
1ADFFD0D-67A6-415D-BC11-74C9CCB32EE9, of type thermometer.basic, which replies about
its attribute temperature:18.0.

The examples use the textual CBOR Diagnostic Notation.

[7,
1572609657,
519551,
h’9F508BCC7ED2A6AC4D83A7236ED3B168C51FFF’,
h’BE67602B9DFC0EDA2CD59FA875109954190D11159C6D67B24CA50201EB09

84FE782F8BCB4259CD38701027184C5959F080DAD013C7A584F44F7EAE52
BAA212086AC467C6461AC866F5ECC13C2C5EFA4CD71BDE7987CE68D1E8F0’]

Figure 4: Example of a xAAL message (Security Layer)

[h’1ADFFD0D67A6415DBC1174C9CCB32EE9’,
"thermometer.basic",
2,
"get_attributes",
{"temperature": 18.0}]

Figure 5: The decrypted payload of a xAAL message (Application Layer)

5.4 Changes in the xAAL Communication Protocol
As in version 0.5-r2, the xAAL messages in version 0.7 are carried on an IP multicast bus
(IPv4 or IPv6). Messages are still made of two layers: a Security Layer which encapsulates an
Application Layer. Data fields, the associated semantic and behaviors are the same.

The novelty is that data are now serialized in CBOR (RFC 704927, and revision draft 7049bis
28). For instance, instead of JSON objects, one may use CBOR map. Also, instead of using
the textual representation of UUID (RFC 4122), one now uses its binary representation as a
CBOR definite byte string of 16 bytes.

JSON was a fine message format for prototyping xAAL. As a textual format, this greatly
has helped developers to diagnostic issues. Now xAAL has grown in maturity. Moreover,
since xAAL version 0.5 have brought ciphering of messages, keeping a textual format have no
more interest. CBOR brings compactness (xAAL messages are now about three times smaller),
but its main advantage since xAAL has ciphered data is that CBOR can manage byte string
properly (i.e. without base64 encoding onto a textual string, as JSON does).

27https://tools.ietf.org/html/rfc7049
28https://tools.ietf.org/html/draft-ietf-cbor-7049bis-07

20

https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-07

CBOR has many other concurrent binary coding formats. Appendix E of RFC 7049 provides
a brief comparison. Not surprisingly, this technical comparison is positive for CBOR. Another
argument in favor of CBOR is that CBOR is a published standard.

Maps vs. Arrays. JSON is deeply linked to the JavaScript programming language and
inherits of some of its concepts: object-oriented, dynamic typing, etc. Within the JSON com-
munity, data is frequently organized into so-called objects data structures (also called maps,
associative arrays, or dictionaries, depending on programming language vocabulary). So that,
each piece of data is associated with a name, which, if well chosen, may make sense in the head
of other developers of the community, bringing a kind of intuitive semantic. This is one of the
reasons why JSON is said a self-describing format. (The other reason is about the serializa-
tion/serialization point of view: thanks to punctuation marks and syntactic salt, the format
of strings carries enough information to decode bytes into data types of usual programming
languages without any other specification document.)

Within the CBOR community, habits slightly differ. Maybe due to its binary basement,
developers prefer array structures, used as struct in C programming language. However, asso-
ciative maps are also available: it is still useful to associate well-chosen names to data items.
Moreover, CBOR provides another means to give semantic to data in a more formal way: data
items may be tagged with a number which refers either a standardized tag29 or an application-
specific tag. (Note that CBOR is also said a self-describing format from the serialization/seri-
alization point of view: the format carries enough information to decode bytes into data types
of usual programming languages without any other specification document.)

In conclusion, xAAL version 0.7 chose to use array structures for its Security Layer and its
Application Layer. There is no more keywords associated with data items for these two layers.
Data items are provided in a strict order, in a strict way. Messages are even shorter, and this
brings simplicity for receivers, without so much complexity for senders. Moreover, there is no
CBOR Tags in these two low-level layers. xAAL nodes already must know those layers format,
there is no need to carry tags for the meaning of fields.

Definite vs. Indefinite Data Structures. CBOR data containers (maps, array, strings,
byte strings) are proposed in two variants: definite (with a predefined size), and indefinite (the
container is open at the beginning, items follow in sequence, the container is closed on reception
of a special end mark).

Both variants have pros and cons, with a balance between the complexity of the sender
versus the complexity of the receiver. Indefinite data containers are fine for streaming data on
the fly. This may also ease the job of the sender if it can’t easily predetermine the size of data
to send, without making two passes. On the other hand, indefinite data containers may bring
more complexity for the job of the receiver which may manage this either by implementing
streaming mechanisms (e.g. with specific call-back functions), or by allocating extra buffers.
The situation is even more uncomfortable with indefinite strings and byte strings for which
chunks may split data at any position.

So, to simplify the job of xAAL receiver, indefinite strings and byte strings are prohibited
within the Security Layer and the Application Layer. A priory this choice does not increase so
much the complexity in the sender for building messages since this two layer are of a well-known
format.

29https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

21

https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

5.5 Measures on the Protocol
xAAL is deployed in our laboratory30.

• There are 121 xAAL devices.

• An average of 4.82 messages per second, that is to say about one message every 25 seconds
for a device.

• An average of 378 bytes pear message with xAAL 0.5, and an average of 128 bytes with
xAAL 0.7, in other words: an average bandwidth of 5 bytes per seconds for a device.

Note that moving from xAAL 0.5 to xAAL 0.7 just changes message size, there is no impact
on the global behavior nor on the number of messages.

Also note that the number of messages is impacted by timeout value for alive notifications
and for get_description requests (usually performed by HMI applications). However, thanks to
bus communication principles, a reply message to an application is used by other applications.
Having multiple applications on the bus does not increase so much the number of messages.

5.6 Security Considerations
5.6.1 Local Communications

By design, home automation protocols over IP do benefit of the security offered by the home
network, which is made of physical wires or of WiFi networks with WPA security. It is therefore
at least as hard to get the control of a home automation from outside as to be able to join the
home network. A protocol with messages in clear could have been fine.

However, main threats may probably not come from outside. Nowadays, end users (happy
eye balls, RFC 8305) are used to bring many smart devices at home, to install many promis-
ing applications, embedding times-to-times suspicious code. If the home automation protocol
does not have any security code, a malicious application could take control of it (e.g. deac-
tivate the alarm, unlock the door for thieves). More probably, such a third part application
could spy the home automation activity, monitor users’ habits and preferences to feed ads and
recommendation systems for consumers.

Such a situation is not desirable, or else, at least, with a clear and informed opinion of the
end user and its agreement... This is why a certain level of security should be added to home
automation systems. Messages should not be in clear, nor ciphered with a hard-coded static
key; secret keys must differ from one home to another; secret keys must not be preconfigured
by companies, but chosen by the end user.

In xAAL version 0.5 and Later, messages are ciphered using Poly1305/Chacha20 algorithm.
According to experts, it is at least as much stronger than others (e.g. AES). It is now in the
cipher suites for TLS (RFC 7905).31 Due to its communicating bus principle, xAAL devices
can’t negotiate cryptographic parameters prior to sending useful data as with client-server
communication principles (selecting a cipher algorithm, a nonce, Diffie-Hellman keys, etc.).
xAAL messages must be self-content, also regarding security parameters. xAAL uses a pre-
shared symmetric key. This is the only parameter that the end user has to configure. The
nonce is a timestamp with a small acceptance window to allow clock drifts.

The security proposed by xAAL is a compromise. Of course, this can be criticized. But
a higher security level will break simplicity and efficiency of xAAL. The security proposed by

30https://www.imt-atlantique.fr/fr/recherche-et-innovation/plateformes-de-recherche/
experiment-haal

31http://www.rfc-editor.org/rfc/rfc7905.txt

22

https://www.imt-atlantique.fr/fr/recherche-et-innovation/plateformes-de-recherche/experiment-haal
https://www.imt-atlantique.fr/fr/recherche-et-innovation/plateformes-de-recherche/experiment-haal
http://www.rfc-editor.org/rfc/rfc7905.txt

xAAL is high enough to protect data carried by home automation communications, and fits
requirements to address threats model one considers.

5.6.2 Cloud Communication

Within the home automation context, users are at home, and services are rendered at home
by the home. One may wonder where to locate and execute service: at home or in the clouds.
xAAL, and many others, propose to locate home automation services at home. This is a
first step to address security and privacy issues. However, nowadays, consumers accept cloud
solutions. This implies to trust involved companies, to give them control of our home, to give
them a view of our activities at home, to believe in their ethic for today and for the future.
Accepting this is a cost for the consumer. The counterpart is the promise to get a simple-to-use
service.

Mobile Clients to Cloud Servers. The first promise is simplicity. Generally, ‘smart de-
vices’ wording has to be read as ‘devices having Internet access and connected to servers of the
company in the clouds’. The consumer buy and install home automation devices (smart plugs,
smart outlets, smart lamps, etc.). Those devices may embed a WiFi network interface, or may
be connected via a dedicated radio protocol to a hub/gateway/box also present at home, which
has a WiFi network interface and sometime an Ethernet one. There is a persistent connec-
tion between devices at home and external computers of the company: usually devices forward
sensor measures and events in real time, and can be remotely controlled from those external
computers. From its side, the consumer uses a mobile application (a dedicated one or a Web
page) which is also connected to those external computers of the company. By this means, the
user is informed of events at home and can send commands to its devices. Companies usually
propose such services for free, or free for the first years. This process conforms to nowadays
usual design of mobile applications: user applications are clients of cloud servers, servers that
are retrieved thanks to a well-known DNS name (Domain Name System, the means to translate
names into Internet addresses). This process is transparent to the user. In addition, the user
has the same level of service whatever he or she is at home near devices, or outside. Controlling
the house from outside by any member of the family is often presented as an advantage despite
there is no clear demands from consumers.

Mobile applications are rarely designed to reach local servers. Indeed, few end-user services
assume that there are servers of anything at home; everything is supposed to be in the clouds.
One of the exceptions is for multimedia drives which allows users to store at home photos
videos and music. Note that such services are now also competed by cloud services. These
multimedia drives are based on protocols such as DLNA that offers discovering features: user
applications can retrieve these drives on the local network and play the contents. xAAL also
has a discovering feature by itself, which may be used by a xAAL mobile application. Or else,
if the xAAL user interface / control point is a Web service in a box on the home network, it
can register its well-known name to the local mDNS server thanks to the Home Networking
Control Protocol (HNCP, RFC 778832 by the Homenet IETF working group). This provides
a generic discovering mechanism for local services. The well-known name of such a xAAL box
can then be retrieved locally by mobile applications, as usual, but at home.

Interoperability in the Clouds. Another promise is the interoperability in the clouds. In-
deed, many home automation vendors propose to interconnect their solution with popular voice
assistants (Google Home, Amazon Alexa, Apple Siri). These devices called ‘voice assistants’,
‘smart speakers’, ‘connected speakers’, but rarely ‘connected microphones’, are cloud services

32http://www.rfc-editor.org/rfc/rfc7788.txt

23

http://www.rfc-editor.org/rfc/rfc7788.txt

by themselves: the speech recognition (more or less automatic33) is mostly performed by ex-
ternal computers, not at home by the device itself. Thanks to programming API, but also to
commercial agreements between companies, cloud computers of voice assistants are connected
with cloud computers of home automation vendors. Such connected microphone records sounds
at home all the time; when a sound matches a given keyword, the sound stream (or chunks)
is pushed to computers of the company of the connected microphone; the sentence is analyzed
by a speech-to-text process; if keywords associated with home automation are recognized then
the text is pushed to computers of the home automation company; if some home automation
commands are recognized then these computers send commands to devices at home to which
they are permanently connected. As a result, the end user may tell requests to its house and
see it in action, very impressive. This kind of universal interface is somehow a kind of interop-
erability in the case there are several home automation technologies at home. In fact, there is
no real inter-operation between them, just a single user interface. For now, this is performed
in the cloud, this is why such solutions are called ‘interoperability in the cloud’. In fact, this
could also be performed locally at home. Speech-to-text is a complex process, and is a precious
added value for companies which manage it. On-line (cloud) solutions seems to be of better
quality than off-line (local) solutions. But, depending on the user’s real needs and feeling, local
solutions are good enough for simple interaction (recognize keywords), as for home automation
services. Moreover, there is no convincing evidence that speech-to-text algorithms executed
nowadays by cloud computers could not be performed by local devices. Companies promise
continuous improvements of their secret algorithms by collecting in the clouds voice and sen-
tences of their consumers, probably by unsupervised learning algorithms, without ground-proof
and labeled data.

To sum up, performing home automation ‘in the clouds’ raise many safety, security, and
ethical issues. There is no real technical obstacles to perform this completely locally, at home,
without any leak of information in the clouds or to third parties. xAAL has been designed with
this idea in mind.

5.7 Alternative Home Automation Protocols over IP
The xAAL communication protocol was inspired by UPnP, xAP, xPL and others.

5.7.1 UPnP

Universal Plug and Play (UPnP) brings advanced concepts and designs for device-to device
communications on, for instance, home networks. Functions are well defined, devices are for-
mally described by schemas, the system allows discovering, etc. The main criticism is about its
heaviness: it is based on HTTP, SSD, XML, SOAP, ZeroConf. Participating nodes often need
all of these layers, each action requires several TCP connections. Nowadays, UPnP remain in
use for smart TVs to display videos from home media servers, via the UPnP DLNA sub-profile
(Digital Living Network Alliance)34. The home automation UPnP profile has never really been
used in products, except for proof of concept demos.

5.7.2 xAP and xPL

The eXtensible Automation Protocol (xAP)35 is a pragmatic ad hoc simple textual home-
automation protocol which uses IPv4 broadcast for message passing between senders and re-

33https://www.bbc.com/news/technology-49502292
34https://www.dlna.org/
35https://www.xapautomation.org/

24

https://www.bbc.com/news/technology-49502292
https://www.dlna.org/
https://www.xapautomation.org/

ceivers. xAP has also the notion of schemas, which defines messages format classes, and some-
how device types. Main criticism is about its ad hoc nature: schemas are not so formal, and
it is concretely rather difficult to interoperate with a device that one has not coded by oneself.
The other difficulty is about its addressing principles by ‘logical name’, ‘device id’, ‘instance
id’, ‘sub-addressing endpoints’, which are commonly replaced by the wildcard mark ‘*’. The
last surprising point is about the architectures: hosts are communicating with each other by
IPv4 broadcast, but software on the same host are locally connected via a UDP unicast socket
to a ‘hub’ component in this host which is in charge to forward those UDP packets to other
hosts by broadcast.

The xPL protocol36 is a fork of the xAP protocol. It defines itself as a ‘glue’ to tie together
home automation technologies. It tried to do things in a more formal way: the UDP port in use
was claimed and officially registered by IANA, schemas were written in XML, unfortunately
without clarifying behavior of devices. Finally, it suffers from the same criticisms as xAP.

xAP and xPL are ten year old protocols and are now closed projects. However, they
have participated founding basements of home automation protocols over IP in terms of need
expression and in terms of solutions basis for interoperability: distributed systems, device-to-
device communications, schemas for devices’ definition, lightweight communication stack...

5.7.3 MQTT-like Protocols

There are still recent proposals in the open-source community for simple ad hoc home automa-
tion protocols using the home IP network, such as MQTT-UDP37.

The Message Queuing Telemetry Transport (MQTT38) is publish/subscribe messaging trans-
port protocol designed for machine-to-machine (M2M) communication: sending commands to a
set of devices, collecting data from sensors (e.g. measuring particulates and dust of town), etc.
MQTT is a one-to-many communication system, based on a star architecture: a central node
(called broker) is in charge of forwarding published messages towards subscribers. Messages
are organized by topics, topics are somehow the addressing system.

The idea of MQTT-UDP is to reuse MQTT principles in a lightweight manner by replacing
the broker by UDP IPv4 broadcast. The result is an ad hoc pragmatic transport protocol for
smart home applications. The functional definition of implied components and specifications
of their API is out of the scope of MQTT-UDP.

5.7.4 Aqara

Aqara is home automation company of Lumi United Technology.39 Aqara products are generally
sold by Xiaomi. Some product variants may be purchased directly to Aqara, with almost same
shape and functionalities.

Technically, Aqara devices are connected to an Aqara Hub at home via the Zigbee radio
protocol.40. This hub is a small home automation gateway with a WiFi interface for Internet
connection, and which is in charge of forwarding home devices messages to and from Aqara
cloud servers via a non-published but verbose UDP protocol. Cloud services allow consumers
to get control of their home devices via a mobile application, retrieve monitored activities,
and to set up automation scripting. Some automation (e.g. alarms) are executed locally by
the hub, other more complex are executed by cloud services. Aqara cloud platform provides a

36http://xplproject.org.uk/
37https://mqtt-udp.readthedocs.io/
38http://mqtt.org/
39https://www.aqara.com/en/home.html
40https://www.aqara.com/eu/smart_home_hub.html

25

http://xplproject.org.uk/
https://mqtt-udp.readthedocs.io/
http://mqtt.org/
https://www.aqara.com/en/home.html
https://www.aqara.com/eu/smart_home_hub.html

documented REST API for third-party applications (e.g. for compatibility with Google Home,
Alexa, and others), or for open-source applications.41

Some models of Aqara Hubs may be configured to activate a home network interface in addi-
tion to the cloud connection.42 This allows user applications controlling home devices directly,
without using cloud services. This local communication uses two UDP sockets: multicast and
unicast. The multicast channel is used: (i) for discovering (for applications to discover hubs
present on the home network), (ii) for heartbeat messages (the hubs and their sub-devices
regularly announce that they are alive, plus a battery level, plus a changing security token),
and (iii) to sends report messages (i.e. notifications of events and sensors changes, from the
hubs to users’ applications). The UDP unicast channel is for command control from users’
applications to the hubs. These messages indicates: (i) the sub-device id (which seems to be
stable and in relation to some Zigbee address of the physical device), (ii) the model name of
the sub-device (this model name is specific to the Aqara or to the Xiaomi products), and (ii) a
set of parameters relating to the indicated model name. These parameters are documented on
Web pages of Aqara.

Aqara messages are in JSON format, in clear text. Note that command messages include a
security key which is computed by concatenating the gateway key with the device token and
then ciphering this with the AES-CBC 128 algorithm, initialized with a predefined vector. The
gateway key is randomly generated by the Aqara cloud service for the first time the gateway is
installed by the consumer. This key is stable and is supposed to be secret. Mobile applications
get it from the cloud after user login. Devices tokens are publicly available in heartbeat messages
and change every 10 seconds. Aqara messages are not ciphered nor signed, this security key
just brings a certain level of confidence in the fact that command messages are sent by a regular
application.

To sum up, the Aqara local protocol has some pro and cons. Having two sockets makes the
communication protocol more cumbersome. On the other hand, providing some functionalities
on unicast is a pragmatic workaround for weakness of WiFi regarding multicast. Devices are
described by a model name, with an effort to document it. Unfortunately, there is no attempt
to organize those devices’ descriptions in terms of family of devices with shared functions or
so. For now, there are about twenty device models. One may wonder about the evolution of
the products list. The security of the local communication protocol is rather poor, but at least
it exists, which is a rather rare in this domain. But the main criticism is about the privacy
concerns caused the cloud services.

5.7.5 Tuya

Tuya is a business-to-business IoT company43. It does not sell home automation by itself
(or very few), but provides services for other companies to propose their own devices to con-
sumers. Tuya has about 75 major companies, and about 93 000 small or medium companies
as clients, over 200 countries, for about 90 000 compatible products. 44 45 Tuya is one of
the preferred technical solutions for low-cost IoT devices. An extremely large number of home
automation and IoT products use the Tuya proprietary technology as backend. Everything
is ‘Tuya-compatible’. Tuya therefore present itself as an interoperability solution. Well, a
dominance industrial position can hardly be seen as a real interoperability solution.

The service provided by Tuya is in three parts. The heart of its service is a cloud platform:
compatible devices can connect to it, send data to it, and receive commands from it. The

41http://docs.opencloud.aqara.com/en/development/cloud-development/
42http://docs.opencloud.aqara.com/en/development/gateway-LAN-communication/
43https://en.tuya.com/
44https://docs.tuya.com/en/iot/introduction-of-tuya/introduction-of-tuya
45https://www.journaldunet.com/ebusiness/internet-mobile/1440892-tuya-smart-le-geant-derriere-100-millions-d-objets-connectes/

26

http://docs.opencloud.aqara.com/en/development/cloud-development/
http://docs.opencloud.aqara.com/en/development/gateway-LAN-communication/
https://en.tuya.com/
https://docs.tuya.com/en/iot/introduction-of-tuya/introduction-of-tuya
https://www.journaldunet.com/ebusiness/internet-mobile/1440892-tuya-smart-le-geant-derriere-100-millions-d-objets-connectes/

second part is a generic mobile application for consumers to get control of their device via the
Tuya platform (the Tuya Smart Life App), as well as REST API for companies to develop
their specific mobile application on top the Tuya platform. The third part of Tuya services
is to provide a code for developers of companies, to be embedded in their devices. For this,
developers are invited to enroll the Tuya program, to describe their device (functions, data
type, commands, etc.). In return, Tuya provides keys to access the platform and piece of
programming code to be embedded in a dedicated Tuya electronic chips with has integrated
WiFi module. Companies develop their product around the chip and the code provided by Tuya.
The code opens a TCP socket from the device at home towards the Tuya cloud platform. Users
data goes on the Tuya cloud platform. The Tuya cloud platform control Tuya devices at home,
send commands, update firmware remotely, etc.

Tuya is a very popular solution with many devices sold. As a consequence, it has been
widely studied, via reverse-engineering processes due to the lack of open documentation, either
for checking its security4647, either to develop alternative compatible applications48.

Tuya devices communicate with their servers via HTTP (or HTTPS, depending on the Tuya
version) for configuration and key exchange. Then command control of devices is performed
with MQTT, whose messages may be encrypted using AES-128 (depending on the Tuya ver-
sion). Security is performed by a symmetrical key which is configured by the Tuya company and
pushed to users’ devices and application. In parallel to cloud communications, Tuya devices
accept local communications with a similar shape of protocol, allowing mobile applications of
the user to control devices locally without a go-and-back in the clouds. Messages are in JSON
format. Parameters are passed as a map of registers named "1" "2", etc. whose meaning is
not specified and corresponds somehow to what the developer has set up the device functions.
There is no formal specification of devices. Tuya is widely deployed, but suffer from safety,
security and privacy issues.

5.7.6 CoAP

The Constrained Application Protocol (CoAP49, RFC 725250) is a popular machine-to-machine
protocol. It is based on the REST51 model, adapted for small devices. It is a client-server
architecture (i.e. many-to-one), and use HTTP-like methods such as GET, PUT, POST, and
DELETE. It is resource-oriented. For instance, a thermometer has the temperature value as a
resource. The server address and the resource name compose the URI managed by CoAP. CoAP
is much lightweight than the HTTP protocol. It is based on UDP. The payload is in XML,
JSON, or CBOR format. Packets may be ciphered with DTLS52. CoAP support multicast
(without ciphering) for one-to-many communications, for instance to send a command towards
several devices. CoAP was designed for IoT use cases, to manage devices in large area networks.

CoAP could also have been a good candidate for home automation and for the xAAL sys-
tem. Unfortunately, its client-server approach does not fit the many-to-many communication
needs. xAAL proposes a full distributed architecture for home automation. Well, CoAP could
have been diverted to do the same: if all nodes are both client and server, one gets a multi-
server architecture which is somehow a distributed architecture. With a bus communication, a
thermometer post one message when its temperature changes. With a client-server communi-

46https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.
html

47https://techsecurity.news/tag/tuya/
48https://github.com/codetheweb/tuyapi
49http://coap.technology/
50https://tools.ietf.org/html/rfc7252
51https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
52https://tools.ietf.org/html/rfc5238

27

https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.html
https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.html
https://techsecurity.news/tag/tuya/
https://github.com/codetheweb/tuyapi
http://coap.technology/
https://tools.ietf.org/html/rfc7252
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc5238

cation, the thermometer expects request messages then send reply messages, or posts messages
to previously subscribed clients (that have to be kept in memory). For home automation, a
bus communication is more efficient than client-server communications even if this could work.

The main obstacle in using CoAP is for the definition of a security mechanism for many-
to-many communications. CoAP uses DTLS (TLS for datagrams) which require a preliminary
negotiation stage prior to send data: to agree on a ciphering algorithm, session keys, nonce, etc.
This is feasible for client-server communication, not for bus communications: each one post its
messages on the bus without any preliminary knowledge of others. This is why a dedicated
communication protocol has been designed within the xAAL system.

5.7.7 OpenHAB

The Open Home Automation Bus (OpenHAB53), ported by the OpenHab Fundation54 is a
popular open-source software solution for home automation. This is a central solution (e.g. to
be installed in a home automation ‘box’). This centralizes in a single software several home
automation functions: user interface, scripting features for automation, and gateways towards
many physical devices and technologies. To address interoperability issues, this software sup-
ports multiple vendor specific home automation systems by the means of add-ons (named
bindings in the OpenHAB vocabulary). For now, add-ons are developed by the open-source
community. Home automation companies are then invited to provide their add-ons for their
devices (similar than PC drivers for peripherals). Due to this technical detail, this is still the
OpenHAB name and logo which is displayed on the box, not the ones of home automation
companies. This can be a real obstacle to the adoption of this approach.

The software is developed with the Java language, and use a OSGi architecture (Open Ser-
vices Gateway initiative, now OSGi Alliance55). Natively, Java VM does not provide technical
means for dynamic libraries loading. OSGi is an answer to cover the need. OSGi proposes a
component architecture. Components, named bundles, can be dynamically loaded to extend
the software, and are communicating with each other via a software bus. OpenHAB specializes
this bus with channels; this bus is the B of OpenHAB. OpenHAB is not a network protocol.
However, some bundles propose a REST API to remotely control the box from iOS, Android,
or Web applications.

5.7.8 Confluens

The Confluens project56 aims to address home automation interoperability. It is both a soft-
ware solution and a company created by home automation companies: CDVI (access control
systems), Delta Dore (heating control devices), Hager, Legrand, Schneider-Electric (electrical
equipment) and Somfy (shutters control automation). Technically, this is an inter-box commu-
nication system. The idea is that a consumer may have several products at home from different
companies, each one managed by the home automation box of the corresponding company. So,
there may be several home automation boxes at home. The boxes may share information and
work together. Communication is based on the MQTT protocol, inside the home network. A
discovery mechanism allows joining new boxes and to elect the box which is to play the role of
the MQTT broker. Communications are securized by TLS (Transport Layer Security57). The
Confluens company is the certificate authority, signs the TLS certificates, and manage their
deployment on partners’ boxes.

53https://www.openhab.org/
54https://www.openhabfoundation.org/
55https://www.osgi.org/
56http://confluens.io/
57https://tools.ietf.org/html/rfc8446

28

https://www.openhab.org/
https://www.openhabfoundation.org/
https://www.osgi.org/
http://confluens.io/
https://tools.ietf.org/html/rfc8446

A home automation box is a centralized solution. Confluens proposes a multi-box approach.
This is less distributed than the xAAL approach, but this is a first step. The MQTT protocol
is a machine-to-machine protocol designed for the global Internet, and may be heavy to be used
inside a home network, a local area network. The pyramidal signing mechanism of TLS’ certifi-
cates can’t allow third parties to enter the loop without prior agreement between companies.
The security is in the hands of companies and not in end users’ ones. At the opposite, xAAL
allows users to manage their privacy.

Confluens is now an ended project. No product was sold with this technology. According
to last news from involved companies, the code is willing to be distributed to the open-source
community.

29

30

A CDDL Rules for xAAL Schemas
; Definition of Schemas for xAAL version 0.7
; Copyright Christophe Lohr IMT Atlantique 2019
; Copying and distribution of this file, with or without modification, are
; permitted in any medium without royalty provided the copyright notice
; and this notice are preserved. This file is offered as-is, without any
; warranty.

schema = {
; The name of the device schema, i.e. the dev_type
title: dev_type,

; A short description in natural language
description: tstr,

; IETF BCB47 language tag of descriptions
lang: tstr,

; URI (rfc3986) pointing to a more comprehensive documentation
documentation: tstr,

; URI (rfc3986) pointing to the original version of this schema
; i.e. before any extention process
ref: tstr,

; License of the the original schema file itself
? license: tstr,

; The schema name which is extended by this one
? extends: dev_type,

; List of attributes managed by the device
? attributes: { + identifier => type_name },

; Methods supported by the device
? methods: { + identifier => method },

; Notifications emitted by the device
? notifications: { + identifier => notification },

; Specifications of data mentionned in the schema
; Typically: attributes, parameters of methods and notifications
? datamodel: { + identifier => datadef }

}

; Format of the name of a schema in the form "foo.bar"
dev_type = tstr .regexp "[a-zA-Z][a-zA-Z0-9_-]*\\.[a-zA-Z][a-zA-Z0-9_-]*"

; Format of names for attributes, methods and notification

31

identifier = tstr .regexp "[a-zA-Z][a-zA-Z0-9_-]*"

type_name = identifier

; Definition of a method
method = {
; A short description in natural language
description: tstr,

; List of input parameters
? in: { * identifier => type_name },

; List of output data
? out: { * identifier => type_name },

; List of device attributes that may be modified while invoking the method
? related_attributes: [* identifier]

}

; Definition of a notification
notification = {
; A short description in natural language
description: tstr,

; List of output data
out: { * identifier => type_name }

}

; Definition of a data
; Used by device attributes, methods and notifications parameters
datadef = {
; A short description in natural language
description: tstr,

; Unit, according to the IANA Sensor Measurement Lists (SenML) registry
? unit: tstr,

; Formal descrtiption in CDDL (rfc8610)
type: tstr

}

32

	Introduction
	The xAAL Architecture
	Overview of the xAAL Architecture
	Typical Work Flow
	Change in the xAAL Architecture
	Communication Channel
	WiFi and Multicast

	The xAAL Devices Behavior and xAAL Schemas
	Definition of a device
	Definition of a schema, the type of device
	Inheritance of schemas

	The Basic Schema
	Composite devices
	Gateways
	Group of devices
	Devices Using Others

	Changes in xAAL Schemas
	Specifying types of attributes and parameters
	Gathering Types Definitions in a Data Model Section
	On the Use of CBOR Tags
	Guidelines for Writing Schemas

	The xAAL Communication Protocol
	The Security Layer
	The Application Layer
	The Ciphering Method
	Changes in the xAAL Communication Protocol
	Measures on the Protocol
	Security Considerations
	Local Communications
	Cloud Communication

	Alternative Home Automation Protocols over IP
	UPnP
	xAP and xPL
	MQTT-like Protocols
	Aqara
	Tuya
	CoAP
	OpenHAB
	Confluens

	CDDL Rules for xAAL Schemas

